Abstract

A four channel hyperspectral imager using Liquid Crystal Fabry-Perot (LCFP) etalons has been built and tested. This imager is capable of making measurements simultaneously in four wavelength ranges in the visible spectrum. The instrument was designed to make measurements of natural airglow and auroral emissions in the upper atmosphere of the Earth and was installed and tested at the Poker Flat Research Range in Fairbanks, Alaska from February to April 2014. The results demonstrate the capabilities and challenges this instrument presents as a sensor for aeronomical studies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multichannel tunable imager architecture for hyperspectral imaging in relevant spectral domains

Chhavi Goenka, Joshua Semeter, John Noto, Jeffrey Baumgardner, Juanita Riccobono, Mike Migliozzi, Hanna Dahlgren, Robert Marshall, Sudha Kapali, Michael Hirsch, Donald Hampton, and Hassanali Akbari
Appl. Opt. 55(12) 3149-3157 (2016)

Hyperspectral all-sky imaging of auroras

Fred Sigernes, Yuriy Ivanov, Sergey Chernouss, Trond Trondsen, Alexey Roldugin, Yury Fedorenko, Boris Kozelov, Andrey Kirillov, Ilia Kornilov, Vladimir Safargaleev, Silje Holmen, Margit Dyrland, Dag Lorentzen, and Lisa Baddeley
Opt. Express 20(25) 27650-27660 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Semeter, D. Lummerzheim, and G. Haerendel, “Simultaneous multispectral imaging of the discrete aurora,” J. Atmos, Solar-Terrestrial Phys. 63(18), 1981–1992 (2001).
    [Crossref]
  2. J. Semeter, W. Schneller, O. H. Bauer, and G. Haerendel, “The Simultaneous-Sampling Multi-Spectral Imager,” in Proceedings of the 25th Annual European meeting on atmospheric studies by optical methods, Granada, Spain (1998), pp 86–89.
  3. H. Dahlgren, N. Ivchenko, B. S. Lanchester, J. Sullivan, D. Whiter, G. Marklund, and A. Strømme, “Using spectral Characteristics to interpret auroral imaging in the 731.9 nm O+ line,” Ann. Geophys. 26(7), 1905–1917 (2008).
    [Crossref]
  4. N. Gat, “Imaging spectroscopy using tunable filters : a review,” Proc. SPIE 4056, 50–64 (2000).
  5. D. Wierzbicki and M. Wilińska, “Liquid crystal tunable filters in detecting water pollution,” presented at the Ninth International Conference Environmental Engineering, Vilnius, Lithuania, 22–23 May 2014.
    [Crossref]
  6. Y. Zhao and L. Zhang, “Spectropolarimetric Imaging for Anomaly Epithelial Tissue Detection,” Sequence and Genome Analysis: Methods and Applications (CreateSpace, 2011), 297–330.
  7. B. P. Stevenson, W. B. Kendall, C. M. Stellman, and M. Frederick, “PHIRST Light : A liquid crystal tunable filter hyperspectral sensor,” Proc. SPIE 5093, 104–113 (2003).
  8. F. Sigernes, Y. Ivanov, S. Chernouss, T. Trondsen, A. Roldugin, Y. Fedorenko, B. Kozelov, A. Kirillov, I. Kornilov, V. Safargaleev, S. Holmen, M. Dyrland, D. Lorentzen, and L. Baddeley, “Hyperspectral all-sky imaging of auroras,” Opt. Express 20(25), 27650–27660 (2012).
    [Crossref] [PubMed]
  9. C. Goenka, J. L. Semeter, J. Noto, H. Dahlgren, R. Marshall, J. Baumgardner, J. Riccobono, and M. Migliozzi, “Tunable filters for multispectral imaging of aeronomical features,” Adv. Space Res. 52(7), 1366–1377 (2013).
    [Crossref]
  10. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1993).
  11. J. W. Chamberlain, Physics of the Aurora and Airglow (Academic, 1961)
  12. G. J. Romick, V. Degen, and W. J. Stringer, “The Altitude Profile of the N2+ first negative rotational temperature in an auroral arc,” J. Geophys. Res. 83(1), 91–96 (1978).
  13. S. Chakrabarti, D. Pallamraju, and J. Baumgardner, “HiTIES : A High Throughput Imaging Echelle Spectrogragh for ground-based visible airglow grating without is achieved by a mosaic of interference filters,” J. Geophys. Res. 106(A12), 30337–30348 (2001).
    [Crossref]
  14. H. Zhang, J. Qi, S. Watchorn, Y. Betremieux, G. Crawford, J. Noto, and R. Kerr, “Novel Switchable Circle-to-Point Converter for Lidar Detection,” Environ. Monit. Remediat. III Proc. SPIE 5270, 199–207 (2004).

2013 (1)

C. Goenka, J. L. Semeter, J. Noto, H. Dahlgren, R. Marshall, J. Baumgardner, J. Riccobono, and M. Migliozzi, “Tunable filters for multispectral imaging of aeronomical features,” Adv. Space Res. 52(7), 1366–1377 (2013).
[Crossref]

2012 (1)

2008 (1)

H. Dahlgren, N. Ivchenko, B. S. Lanchester, J. Sullivan, D. Whiter, G. Marklund, and A. Strømme, “Using spectral Characteristics to interpret auroral imaging in the 731.9 nm O+ line,” Ann. Geophys. 26(7), 1905–1917 (2008).
[Crossref]

2003 (1)

B. P. Stevenson, W. B. Kendall, C. M. Stellman, and M. Frederick, “PHIRST Light : A liquid crystal tunable filter hyperspectral sensor,” Proc. SPIE 5093, 104–113 (2003).

2001 (2)

J. Semeter, D. Lummerzheim, and G. Haerendel, “Simultaneous multispectral imaging of the discrete aurora,” J. Atmos, Solar-Terrestrial Phys. 63(18), 1981–1992 (2001).
[Crossref]

S. Chakrabarti, D. Pallamraju, and J. Baumgardner, “HiTIES : A High Throughput Imaging Echelle Spectrogragh for ground-based visible airglow grating without is achieved by a mosaic of interference filters,” J. Geophys. Res. 106(A12), 30337–30348 (2001).
[Crossref]

2000 (1)

N. Gat, “Imaging spectroscopy using tunable filters : a review,” Proc. SPIE 4056, 50–64 (2000).

1978 (1)

G. J. Romick, V. Degen, and W. J. Stringer, “The Altitude Profile of the N2+ first negative rotational temperature in an auroral arc,” J. Geophys. Res. 83(1), 91–96 (1978).

Baddeley, L.

Bauer, O. H.

J. Semeter, W. Schneller, O. H. Bauer, and G. Haerendel, “The Simultaneous-Sampling Multi-Spectral Imager,” in Proceedings of the 25th Annual European meeting on atmospheric studies by optical methods, Granada, Spain (1998), pp 86–89.

Baumgardner, J.

C. Goenka, J. L. Semeter, J. Noto, H. Dahlgren, R. Marshall, J. Baumgardner, J. Riccobono, and M. Migliozzi, “Tunable filters for multispectral imaging of aeronomical features,” Adv. Space Res. 52(7), 1366–1377 (2013).
[Crossref]

S. Chakrabarti, D. Pallamraju, and J. Baumgardner, “HiTIES : A High Throughput Imaging Echelle Spectrogragh for ground-based visible airglow grating without is achieved by a mosaic of interference filters,” J. Geophys. Res. 106(A12), 30337–30348 (2001).
[Crossref]

Chakrabarti, S.

S. Chakrabarti, D. Pallamraju, and J. Baumgardner, “HiTIES : A High Throughput Imaging Echelle Spectrogragh for ground-based visible airglow grating without is achieved by a mosaic of interference filters,” J. Geophys. Res. 106(A12), 30337–30348 (2001).
[Crossref]

Chernouss, S.

Dahlgren, H.

C. Goenka, J. L. Semeter, J. Noto, H. Dahlgren, R. Marshall, J. Baumgardner, J. Riccobono, and M. Migliozzi, “Tunable filters for multispectral imaging of aeronomical features,” Adv. Space Res. 52(7), 1366–1377 (2013).
[Crossref]

H. Dahlgren, N. Ivchenko, B. S. Lanchester, J. Sullivan, D. Whiter, G. Marklund, and A. Strømme, “Using spectral Characteristics to interpret auroral imaging in the 731.9 nm O+ line,” Ann. Geophys. 26(7), 1905–1917 (2008).
[Crossref]

Degen, V.

G. J. Romick, V. Degen, and W. J. Stringer, “The Altitude Profile of the N2+ first negative rotational temperature in an auroral arc,” J. Geophys. Res. 83(1), 91–96 (1978).

Dyrland, M.

Fedorenko, Y.

Frederick, M.

B. P. Stevenson, W. B. Kendall, C. M. Stellman, and M. Frederick, “PHIRST Light : A liquid crystal tunable filter hyperspectral sensor,” Proc. SPIE 5093, 104–113 (2003).

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters : a review,” Proc. SPIE 4056, 50–64 (2000).

Goenka, C.

C. Goenka, J. L. Semeter, J. Noto, H. Dahlgren, R. Marshall, J. Baumgardner, J. Riccobono, and M. Migliozzi, “Tunable filters for multispectral imaging of aeronomical features,” Adv. Space Res. 52(7), 1366–1377 (2013).
[Crossref]

Haerendel, G.

J. Semeter, D. Lummerzheim, and G. Haerendel, “Simultaneous multispectral imaging of the discrete aurora,” J. Atmos, Solar-Terrestrial Phys. 63(18), 1981–1992 (2001).
[Crossref]

J. Semeter, W. Schneller, O. H. Bauer, and G. Haerendel, “The Simultaneous-Sampling Multi-Spectral Imager,” in Proceedings of the 25th Annual European meeting on atmospheric studies by optical methods, Granada, Spain (1998), pp 86–89.

Holmen, S.

Ivanov, Y.

Ivchenko, N.

H. Dahlgren, N. Ivchenko, B. S. Lanchester, J. Sullivan, D. Whiter, G. Marklund, and A. Strømme, “Using spectral Characteristics to interpret auroral imaging in the 731.9 nm O+ line,” Ann. Geophys. 26(7), 1905–1917 (2008).
[Crossref]

Kendall, W. B.

B. P. Stevenson, W. B. Kendall, C. M. Stellman, and M. Frederick, “PHIRST Light : A liquid crystal tunable filter hyperspectral sensor,” Proc. SPIE 5093, 104–113 (2003).

Kirillov, A.

Kornilov, I.

Kozelov, B.

Lanchester, B. S.

H. Dahlgren, N. Ivchenko, B. S. Lanchester, J. Sullivan, D. Whiter, G. Marklund, and A. Strømme, “Using spectral Characteristics to interpret auroral imaging in the 731.9 nm O+ line,” Ann. Geophys. 26(7), 1905–1917 (2008).
[Crossref]

Lorentzen, D.

Lummerzheim, D.

J. Semeter, D. Lummerzheim, and G. Haerendel, “Simultaneous multispectral imaging of the discrete aurora,” J. Atmos, Solar-Terrestrial Phys. 63(18), 1981–1992 (2001).
[Crossref]

Marklund, G.

H. Dahlgren, N. Ivchenko, B. S. Lanchester, J. Sullivan, D. Whiter, G. Marklund, and A. Strømme, “Using spectral Characteristics to interpret auroral imaging in the 731.9 nm O+ line,” Ann. Geophys. 26(7), 1905–1917 (2008).
[Crossref]

Marshall, R.

C. Goenka, J. L. Semeter, J. Noto, H. Dahlgren, R. Marshall, J. Baumgardner, J. Riccobono, and M. Migliozzi, “Tunable filters for multispectral imaging of aeronomical features,” Adv. Space Res. 52(7), 1366–1377 (2013).
[Crossref]

Migliozzi, M.

C. Goenka, J. L. Semeter, J. Noto, H. Dahlgren, R. Marshall, J. Baumgardner, J. Riccobono, and M. Migliozzi, “Tunable filters for multispectral imaging of aeronomical features,” Adv. Space Res. 52(7), 1366–1377 (2013).
[Crossref]

Noto, J.

C. Goenka, J. L. Semeter, J. Noto, H. Dahlgren, R. Marshall, J. Baumgardner, J. Riccobono, and M. Migliozzi, “Tunable filters for multispectral imaging of aeronomical features,” Adv. Space Res. 52(7), 1366–1377 (2013).
[Crossref]

Pallamraju, D.

S. Chakrabarti, D. Pallamraju, and J. Baumgardner, “HiTIES : A High Throughput Imaging Echelle Spectrogragh for ground-based visible airglow grating without is achieved by a mosaic of interference filters,” J. Geophys. Res. 106(A12), 30337–30348 (2001).
[Crossref]

Riccobono, J.

C. Goenka, J. L. Semeter, J. Noto, H. Dahlgren, R. Marshall, J. Baumgardner, J. Riccobono, and M. Migliozzi, “Tunable filters for multispectral imaging of aeronomical features,” Adv. Space Res. 52(7), 1366–1377 (2013).
[Crossref]

Roldugin, A.

Romick, G. J.

G. J. Romick, V. Degen, and W. J. Stringer, “The Altitude Profile of the N2+ first negative rotational temperature in an auroral arc,” J. Geophys. Res. 83(1), 91–96 (1978).

Safargaleev, V.

Schneller, W.

J. Semeter, W. Schneller, O. H. Bauer, and G. Haerendel, “The Simultaneous-Sampling Multi-Spectral Imager,” in Proceedings of the 25th Annual European meeting on atmospheric studies by optical methods, Granada, Spain (1998), pp 86–89.

Semeter, J.

J. Semeter, D. Lummerzheim, and G. Haerendel, “Simultaneous multispectral imaging of the discrete aurora,” J. Atmos, Solar-Terrestrial Phys. 63(18), 1981–1992 (2001).
[Crossref]

J. Semeter, W. Schneller, O. H. Bauer, and G. Haerendel, “The Simultaneous-Sampling Multi-Spectral Imager,” in Proceedings of the 25th Annual European meeting on atmospheric studies by optical methods, Granada, Spain (1998), pp 86–89.

Semeter, J. L.

C. Goenka, J. L. Semeter, J. Noto, H. Dahlgren, R. Marshall, J. Baumgardner, J. Riccobono, and M. Migliozzi, “Tunable filters for multispectral imaging of aeronomical features,” Adv. Space Res. 52(7), 1366–1377 (2013).
[Crossref]

Sigernes, F.

Stellman, C. M.

B. P. Stevenson, W. B. Kendall, C. M. Stellman, and M. Frederick, “PHIRST Light : A liquid crystal tunable filter hyperspectral sensor,” Proc. SPIE 5093, 104–113 (2003).

Stevenson, B. P.

B. P. Stevenson, W. B. Kendall, C. M. Stellman, and M. Frederick, “PHIRST Light : A liquid crystal tunable filter hyperspectral sensor,” Proc. SPIE 5093, 104–113 (2003).

Stringer, W. J.

G. J. Romick, V. Degen, and W. J. Stringer, “The Altitude Profile of the N2+ first negative rotational temperature in an auroral arc,” J. Geophys. Res. 83(1), 91–96 (1978).

Strømme, A.

H. Dahlgren, N. Ivchenko, B. S. Lanchester, J. Sullivan, D. Whiter, G. Marklund, and A. Strømme, “Using spectral Characteristics to interpret auroral imaging in the 731.9 nm O+ line,” Ann. Geophys. 26(7), 1905–1917 (2008).
[Crossref]

Sullivan, J.

H. Dahlgren, N. Ivchenko, B. S. Lanchester, J. Sullivan, D. Whiter, G. Marklund, and A. Strømme, “Using spectral Characteristics to interpret auroral imaging in the 731.9 nm O+ line,” Ann. Geophys. 26(7), 1905–1917 (2008).
[Crossref]

Trondsen, T.

Whiter, D.

H. Dahlgren, N. Ivchenko, B. S. Lanchester, J. Sullivan, D. Whiter, G. Marklund, and A. Strømme, “Using spectral Characteristics to interpret auroral imaging in the 731.9 nm O+ line,” Ann. Geophys. 26(7), 1905–1917 (2008).
[Crossref]

Adv. Space Res. (1)

C. Goenka, J. L. Semeter, J. Noto, H. Dahlgren, R. Marshall, J. Baumgardner, J. Riccobono, and M. Migliozzi, “Tunable filters for multispectral imaging of aeronomical features,” Adv. Space Res. 52(7), 1366–1377 (2013).
[Crossref]

Ann. Geophys. (1)

H. Dahlgren, N. Ivchenko, B. S. Lanchester, J. Sullivan, D. Whiter, G. Marklund, and A. Strømme, “Using spectral Characteristics to interpret auroral imaging in the 731.9 nm O+ line,” Ann. Geophys. 26(7), 1905–1917 (2008).
[Crossref]

J. Atmos, Solar-Terrestrial Phys. (1)

J. Semeter, D. Lummerzheim, and G. Haerendel, “Simultaneous multispectral imaging of the discrete aurora,” J. Atmos, Solar-Terrestrial Phys. 63(18), 1981–1992 (2001).
[Crossref]

J. Geophys. Res. (2)

G. J. Romick, V. Degen, and W. J. Stringer, “The Altitude Profile of the N2+ first negative rotational temperature in an auroral arc,” J. Geophys. Res. 83(1), 91–96 (1978).

S. Chakrabarti, D. Pallamraju, and J. Baumgardner, “HiTIES : A High Throughput Imaging Echelle Spectrogragh for ground-based visible airglow grating without is achieved by a mosaic of interference filters,” J. Geophys. Res. 106(A12), 30337–30348 (2001).
[Crossref]

Opt. Express (1)

Proc. SPIE (2)

B. P. Stevenson, W. B. Kendall, C. M. Stellman, and M. Frederick, “PHIRST Light : A liquid crystal tunable filter hyperspectral sensor,” Proc. SPIE 5093, 104–113 (2003).

N. Gat, “Imaging spectroscopy using tunable filters : a review,” Proc. SPIE 4056, 50–64 (2000).

Other (6)

D. Wierzbicki and M. Wilińska, “Liquid crystal tunable filters in detecting water pollution,” presented at the Ninth International Conference Environmental Engineering, Vilnius, Lithuania, 22–23 May 2014.
[Crossref]

Y. Zhao and L. Zhang, “Spectropolarimetric Imaging for Anomaly Epithelial Tissue Detection,” Sequence and Genome Analysis: Methods and Applications (CreateSpace, 2011), 297–330.

J. Semeter, W. Schneller, O. H. Bauer, and G. Haerendel, “The Simultaneous-Sampling Multi-Spectral Imager,” in Proceedings of the 25th Annual European meeting on atmospheric studies by optical methods, Granada, Spain (1998), pp 86–89.

H. Zhang, J. Qi, S. Watchorn, Y. Betremieux, G. Crawford, J. Noto, and R. Kerr, “Novel Switchable Circle-to-Point Converter for Lidar Detection,” Environ. Monit. Remediat. III Proc. SPIE 5270, 199–207 (2004).

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1993).

J. W. Chamberlain, Physics of the Aurora and Airglow (Academic, 1961)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Transmission peaks of the LCFP for a gap of 10µm tuned to 6300 Å and 6364 Å, and the transmission of the order sorting filter. (b) LCFP transmission function truncated by the order sorting filter transmission function.
Fig. 2
Fig. 2 Schematic of LiCHI showing the optical components.
Fig. 3
Fig. 3 The left panel shows the complete assembled instrument with components (a) front objective (b) field stop and other front optics (c) collimating lens (d) etalon cage with order sorting filters, polarizers and the etalon assembly (e) reimaging lens (f) camera. The right panel shows the 4-channel tunable etalon subassembly with order sorting filters and polarizers.
Fig. 4
Fig. 4 This figure shows the transmission characteristics of one of the etalons with respect to wavelength, at a fixed voltage. The different panels are (a) Spectra of a tungsten lamp as measured through the etalon transmission function (b) Spectra of the tungsten lamp as measured directly, without the etalon (c) Transmission of the etalon obtained by dividing the spectra in (a) by the spectra in (b).
Fig. 5
Fig. 5 LiCHI installed in a dome in the science building at Poker Flat Research Range near Fairbanks, Alaska.
Fig. 6
Fig. 6 The auroral spectrum showing (a) the emission lines at 4278 Å (N2 + 1NG), 5577 Å (O) and the doublet at 6300 Å - 6364 Å (O) embedded in a broad background (spectrum from Poker Flat, AK, courtesy of Jeff Baumgardner, CSP, Boston University). (b) the 7320-7330 Å O + emission lines (spectrum measured with the spectrograph HiTIES [13]).
Fig. 7
Fig. 7 Shown here are images from an auroral event, on April 17th 2014, which was captured by LiCHI in the 5577 Å and the 6300 Å channels with exposure time of 30 seconds. LiCHI made on-band and off-band measurements in both channels. The 6 panels labeled (a)-(f) show the temporal progression of the event as it was captured by three instruments – LiCHI, Digital Meridian Spectrograph (DMSP) and the Digital All Sky Camera (DASC), all collocated at Poker Flat Research Range. Each panel shown above comprises three figures. The left figure in each panel shows the DMSP measurements and the passband of LiCHI. The figure on the top right in each panel shows the image captured by the DASC with the black box showing the LiCHI field of view. The figure on the bottom right of each panel shows the corresponding image captured by LiCHI with the channels labeled in yellow and the DMSP slit position marked by a dotted white line.
Fig. 8
Fig. 8 Plot of mean values of the images of nightglow taken by LiCHI on the night of March 13th 2014, in the absence of an auroral event, for recalibration of voltage vs wavelength. The x axis at the bottom of the plot shows the voltages in data numbers and the x axis on the top shows the central wavelengths corresponding to the voltages.

Tables (2)

Tables Icon

Table 1 Characteristics of the liquid crystal etalons along with the application of each channel.

Tables Icon

Table 2 Characteristics of order sorting filters.

Metrics