Abstract

We propose a simple scheme to realize ultra-high peak rejection notch microwave photonic filter (MPF) based on a single silicon microring resonator (MRR). Using the combination of a conventional phase modulator (PM), a tunable bandpass filter (TBF), and a silicon MRR to manipulate the phase and amplitude of optical sidebands resulting in a signal cancellation at the RF notch filter frequency, we experimentally demonstrate a notch MPF with an ultra-high peak rejection beyond 60 dB. The frequency tunability of the proposed ultra-high peak rejection MPF is also demonstrated in the experiment.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection

David Marpaung, Blair Morrison, Ravi Pant, Chris Roeloffzen, Arne Leinse, Marcel Hoekman, Rene Heideman, and Benjamin J. Eggleton
Opt. Express 21(20) 23286-23294 (2013)

Performance improvements of a tunable bandpass microwave photonic filter based on a notch ring resonator using phase modulation with dual optical carriers

Jing Li, Pengfei Zheng, Guohua Hu, Ruohu Zhang, Binfeng Yun, and Yiping Cui
Opt. Express 27(7) 9705-9715 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  3. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
    [Crossref]
  4. B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32(1), 23–25 (2007).
    [Crossref] [PubMed]
  5. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(23), 1775–1777 (2011).
    [Crossref]
  6. L. Gao, X. Chen, and J. Yao, “Tunable microwave photonic filter with a narrow and flat-top passband,” IEEE Microw. Wirel. Compon. Lett. 23(7), 362–364 (2013).
    [Crossref]
  7. W. Li and J. Yao, “A narrow-passband frequency-tunable microwave photonic filter with an improved dynamic range,” in Optical Fiber Communication Conference(Optical Society of America, 2013), paper OTu2H. 3.
    [Crossref]
  8. P. K. Yu, “A novel digitally tunable microwave-photonic notch filter using differential group-delay module,” IEEE Photon. Technol. Lett. 15, 284–286 (2003).
  9. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  10. P. Alipour, A. A. Eftekhar, A. H. Atabaki, Q. Li, S. Yegnanarayanan, C. K. Madsen, and A. Adibi, “Fully reconfigurable compact RF photonic filters using high-Q silicon microdisk resonators,” Opt. Express 19(17), 15899–15907 (2011).
    [Crossref] [PubMed]
  11. D. Zhang, X. Feng, X. Li, K. Cui, F. Liu, and Y. Huang, “Tunable and reconfigurable bandstop microwave photonic filter based on integrated microrings and Mach–Zehnder interferometer,” J. Lightwave Technol. 31(23), 3668–3675 (2013).
    [Crossref]
  12. J. Palací, G. E. Villanueva, J. V. Galán, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
    [Crossref]
  13. M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, and M. Beals, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol. 27(12), 2105–2110 (2009).
    [Crossref]
  14. J. Lloret, J. Sancho, M. Pu, I. Gasulla, K. Yvind, S. Sales, and J. Capmany, “Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator,” Opt. Express 19(13), 12402–12407 (2011).
    [Crossref] [PubMed]
  15. D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 24(17), 1502–1505 (2012).
    [Crossref]
  16. D. Cabric, I. D. O’Donnell, M.-W. Chen, and R. W. Brodersen, “Spectrum sharing radios,” IEEE Circuits Syst. Mag. 6(2), 30–45 (2006).
    [Crossref]
  17. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
    [Crossref]
  18. Y. Long, H. Zhang, C. Li, C. Gui, Q. Yang, and J. Wang, “Ultracompact optically-controlled tunable microwave photonic filter based on a nonlinear silicon microring resonator,” in Asia Communications and Photonics Conference (Optical Society of America, 2014), paper AF1B. 7.
    [Crossref]
  19. D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, and B. J. Eggleton, “Ultrahigh suppression and reconfigurable RF photonic notch filter using a silicon nitride ring resonator,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2014), paper SF2O.1.
    [Crossref]
  20. E. Chan, W. Zhang, and R. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightwave Technol. 30(23), 3672–3678 (2012).
    [Crossref]
  21. Y. Long, H. Zhang, C. Li, C. Gui, Q. Yang, and J. Wang, “Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator, ” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W2A.58.
    [Crossref]
  22. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
    [Crossref]
  23. W. Zhang and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(14), 1182–1184 (2012).
    [Crossref]

2014 (1)

2013 (3)

2012 (3)

W. Zhang and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(14), 1182–1184 (2012).
[Crossref]

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

E. Chan, W. Zhang, and R. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightwave Technol. 30(23), 3672–3678 (2012).
[Crossref]

2011 (3)

2010 (1)

J. Palací, G. E. Villanueva, J. V. Galán, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

2009 (2)

2007 (1)

2006 (3)

2003 (2)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[Crossref]

P. K. Yu, “A novel digitally tunable microwave-photonic notch filter using differential group-delay module,” IEEE Photon. Technol. Lett. 15, 284–286 (2003).

Adibi, A.

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[Crossref]

Alipour, P.

Andrés, M. V.

Atabaki, A. H.

Beals, M.

Beattie, J.

Brodersen, R. W.

D. Cabric, I. D. O’Donnell, M.-W. Chen, and R. W. Brodersen, “Spectrum sharing radios,” IEEE Circuits Syst. Mag. 6(2), 30–45 (2006).
[Crossref]

Cabric, D.

D. Cabric, I. D. O’Donnell, M.-W. Chen, and R. W. Brodersen, “Spectrum sharing radios,” IEEE Circuits Syst. Mag. 6(2), 30–45 (2006).
[Crossref]

Capmany, J.

Carothers, D.

Chan, E.

Chen, M.-W.

D. Cabric, I. D. O’Donnell, M.-W. Chen, and R. W. Brodersen, “Spectrum sharing radios,” IEEE Circuits Syst. Mag. 6(2), 30–45 (2006).
[Crossref]

Chen, X.

L. Gao, X. Chen, and J. Yao, “Tunable microwave photonic filter with a narrow and flat-top passband,” IEEE Microw. Wirel. Compon. Lett. 23(7), 362–364 (2013).
[Crossref]

Chen, Y.-K.

Cruz, J. L.

Cui, K.

Díez, A.

Ding, Y.

Eftekhar, A. A.

Fathpour, S.

Feng, X.

D. Zhang, X. Feng, X. Li, K. Cui, F. Liu, and Y. Huang, “Tunable and reconfigurable bandstop microwave photonic filter based on integrated microrings and Mach–Zehnder interferometer,” J. Lightwave Technol. 31(23), 3668–3675 (2013).
[Crossref]

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

Galán, J. V.

J. Palací, G. E. Villanueva, J. V. Galán, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Gao, L.

L. Gao, X. Chen, and J. Yao, “Tunable microwave photonic filter with a narrow and flat-top passband,” IEEE Microw. Wirel. Compon. Lett. 23(7), 362–364 (2013).
[Crossref]

Gasulla, I.

Gill, D. M.

Huang, Y.

D. Zhang, X. Feng, X. Li, K. Cui, F. Liu, and Y. Huang, “Tunable and reconfigurable bandstop microwave photonic filter based on integrated microrings and Mach–Zehnder interferometer,” J. Lightwave Technol. 31(23), 3668–3675 (2013).
[Crossref]

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

Jalali, B.

Li, Q.

Li, X.

Liu, F.

Lloret, J.

Madsen, C. K.

Marti, J.

J. Palací, G. E. Villanueva, J. V. Galán, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Martí, J.

Minasian, R.

Minasian, R. A.

W. Zhang and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(14), 1182–1184 (2012).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

Mora, J.

O’Donnell, I. D.

D. Cabric, I. D. O’Donnell, M.-W. Chen, and R. W. Brodersen, “Spectrum sharing radios,” IEEE Circuits Syst. Mag. 6(2), 30–45 (2006).
[Crossref]

Ortega, B.

Ou, H.

Palací, J.

J. Palací, G. E. Villanueva, J. V. Galán, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Pastor, D.

Patel, S. S.

Peucheret, C.

Piqueras, M. A.

Pomerene, A.

Pu, M.

Rasras, M. S.

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[Crossref]

Sales, S.

Sancho, J.

Tu, K.-Y.

Vidal, B.

J. Palací, G. E. Villanueva, J. V. Galán, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32(1), 23–25 (2007).
[Crossref] [PubMed]

Villanueva, G. E.

J. Palací, G. E. Villanueva, J. V. Galán, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

White, A. E.

Yao, J.

L. Gao, X. Chen, and J. Yao, “Tunable microwave photonic filter with a narrow and flat-top passband,” IEEE Microw. Wirel. Compon. Lett. 23(7), 362–364 (2013).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Yegnanarayanan, S.

Yu, P. K.

P. K. Yu, “A novel digitally tunable microwave-photonic notch filter using differential group-delay module,” IEEE Photon. Technol. Lett. 15, 284–286 (2003).

Yvind, K.

Zhang, D.

D. Zhang, X. Feng, X. Li, K. Cui, F. Liu, and Y. Huang, “Tunable and reconfigurable bandstop microwave photonic filter based on integrated microrings and Mach–Zehnder interferometer,” J. Lightwave Technol. 31(23), 3668–3675 (2013).
[Crossref]

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

Zhang, W.

W. Zhang and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(14), 1182–1184 (2012).
[Crossref]

E. Chan, W. Zhang, and R. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightwave Technol. 30(23), 3672–3678 (2012).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

IEEE Circuits Syst. Mag. (1)

D. Cabric, I. D. O’Donnell, M.-W. Chen, and R. W. Brodersen, “Spectrum sharing radios,” IEEE Circuits Syst. Mag. 6(2), 30–45 (2006).
[Crossref]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

L. Gao, X. Chen, and J. Yao, “Tunable microwave photonic filter with a narrow and flat-top passband,” IEEE Microw. Wirel. Compon. Lett. 23(7), 362–364 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (5)

P. K. Yu, “A novel digitally tunable microwave-photonic notch filter using differential group-delay module,” IEEE Photon. Technol. Lett. 15, 284–286 (2003).

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

J. Palací, G. E. Villanueva, J. V. Galán, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

W. Zhang and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(14), 1182–1184 (2012).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

J. Lightwave Technol. (7)

Opt. Express (2)

Opt. Lett. (2)

Other (4)

Y. Long, H. Zhang, C. Li, C. Gui, Q. Yang, and J. Wang, “Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator, ” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W2A.58.
[Crossref]

W. Li and J. Yao, “A narrow-passband frequency-tunable microwave photonic filter with an improved dynamic range,” in Optical Fiber Communication Conference(Optical Society of America, 2013), paper OTu2H. 3.
[Crossref]

Y. Long, H. Zhang, C. Li, C. Gui, Q. Yang, and J. Wang, “Ultracompact optically-controlled tunable microwave photonic filter based on a nonlinear silicon microring resonator,” in Asia Communications and Photonics Conference (Optical Society of America, 2014), paper AF1B. 7.
[Crossref]

D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, and B. J. Eggleton, “Ultrahigh suppression and reconfigurable RF photonic notch filter using a silicon nitride ring resonator,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2014), paper SF2O.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic illustration of (a) a conventional SSB based notch MPF and (b) the proposed notch MPF with ultra-high peak rejection.
Fig. 2
Fig. 2 Measured transmission spectrum of the TBF.
Fig. 3
Fig. 3 (a)-(d) Caculated MPF response when the central wavelength of the TBF is 1581.746 nm, 1581.776 nm, 1581.806 nm and 1581.836 nm, respectively. The optical carrier wavelength is 1581.576 nm.
Fig. 4
Fig. 4 (a) Scanning electron microscope (SEM) image of the silicon microring resonator and (b) its transmission spectrum.
Fig. 5
Fig. 5 Schematic of the experimental system for ultra-high peak rejection MPF. Solid lines: optical path, dash lines: electrical path, TLD: tunable laser diode, PM: phase modulator, TBF: tunable bandpass filter, EDFA: erbium-doped fiber amplifier, PC: polarization controller, VOA: variable optical attenuator, PD: photodetector, EA: electrical amplifier, VNA: vector network analyzer.
Fig. 6
Fig. 6 (a)-(d) Optical spectra after the TBF when the central wavelength of the TBF is 1581.746 nm, 1581.776 nm, 1581.806 nm and 1581.836 nm, respectively. The dashed lines are the corresponding transmission spectrum of TBF. (e)-(h) The corresponding MPF responses.
Fig. 7
Fig. 7 Measured tunable ultra-high peak rejection MPF responses with different optical carrier wavelengths.
Fig. 8
Fig. 8 The typical amplitude and phase responses before and after the MRR when the bandwidth of MRR is smaller than the central frequency of MPF. The insects show the zoom-in of the amplitude and phase responses around the resonant frequency of MRR.
Fig. 9
Fig. 9 Simulated RF response when the bandwidth of MRR is smaller than the central frequency of the MPF.
Fig. 10
Fig. 10 The typical amplitude and phase responsess before and after the MRR when the bandwidth of the MRR is comparable with the central frequency of the MPF.
Fig. 11
Fig. 11 Simulated RF response when the bandwidth of MRR is comparable with the central frequency of the MPF.
Fig. 12
Fig. 12 Simulated RF response when the MPF works at low frequency.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A ( t ) = e j ω L t e j β sin ( ω R F t )
A ( t ) = J 0 ( β ) e j ω L t + J 1 ( β ) e j ( ω L + ω R F ) t J 1 ( β ) e j ( ω L ω R F ) t
A ( t ) = J 0 ( β ) e j ω L t T T B F ( ω L ) + J 1 ( β ) e j ( ω L + ω R F ) t T T B F ( ω L + ω R F ) J 1 ( β ) e j ( ω L ω R F ) t T T B F ( ω L ω R F )
A ( t ) = J 0 ( β ) e j ω L t T T B F ( ω L ) T M R R ( ω L ) + J 1 ( β ) e j ( ω L + ω R F ) t T T B F ( ω L + ω R F ) T M R R ( ω L + ω R F ) J 1 ( β ) e j ( ω L ω R F ) t T T B F ( ω L ω R F ) T M R R ( ω L ω R F )
T M R R ( ω ) = r a e j ω c n e f f L 1 a r e j ω c n e f f L
A ( t ) = J 0 ( β ) e j ω L t + J 1 ( β ) e j ( ω L + 2 π f r ) t J 1 ( β ) e j ( ω L 2 π f r ) t
A ( t ) = J 0 ( β ) e j ω L t + j φ 0 + J 1 ( β ) e j ( ω L + 2 π f r ) t + j ( φ 0 + Δ φ ) J 1 ( β ) e j ( ω L 2 π f r ) t + j ( φ 0 Δ φ )

Metrics