Abstract

A miniature all-fiber temperature sensor is demonstrated by using a Michelson interferometer formed with a short length of Germania-core, silica-cladding optical fiber (Ge-fiber) fusion-spliced to a conventional single-mode fiber (SMF). Thanks to the large differential refractive index of the Ge-fiber sensing element, a reasonably small free spectral range (FSR) of 18.6 nm is achieved even with an as short as 0.9 mm Ge-fiber that may help us increase the measurement accuracy especially in point sensing applications and, at the same time, keep large measurement temperature range without overlapping reading problem. Experimental results show that high sensitivity of 89.0 pm/°C is achieved and the highest measurement temperature is up to 500°C.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High temperature fiber sensor with high sensitivity based on core diameter mismatch

Linh Viet Nguyen, Dusun Hwang, Sucbei Moon, Dae Seung Moon, and Youngjoo Chung
Opt. Express 16(15) 11369-11375 (2008)

Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing

Li Duan, Peng Zhang, Ming Tang, Ruoxu Wang, Zhiyong Zhao, Songnian Fu, Lin Gan, Benpeng Zhu, Weijun Tong, Deming Liu, and Perry Ping Shum
Opt. Express 24(18) 20210-20218 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. Hirayama and Y. Sano, “Fiber Bragg grating temperature sensor for practical use,” ISA. T 39, 169 (2000).
    [Crossref]
  2. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
    [Crossref]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  4. T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
    [Crossref] [PubMed]
  5. J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
    [Crossref]
  6. C. Wu, H. Y. Fu, K. K. Qureshi, B.-O. Guan, and H.-Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
    [Crossref] [PubMed]
  7. Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
    [Crossref] [PubMed]
  8. T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
    [Crossref]
  9. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  10. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
    [Crossref] [PubMed]
  11. T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
    [Crossref]
  12. J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
    [Crossref]
  13. F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, “A miniature temperature high germanium doped PCF interferometer sensor,” Opt. Express 21(25), 30266–30274 (2013).
    [Crossref] [PubMed]
  14. A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
    [Crossref]
  15. Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
    [Crossref]
  16. T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
    [Crossref]
  17. B. Dong, L. Wei, and D.-P. Zhou, “Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer,” Appl. Opt. 48(33), 6466–6469 (2009).
    [Crossref] [PubMed]
  18. Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
    [Crossref]
  19. Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
    [Crossref]
  20. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
    [Crossref]
  21. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  22. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
    [Crossref] [PubMed]
  23. E. Li and G. D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281(23), 5768–5770 (2008).
    [Crossref]
  24. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46(13), 2516–2519 (2007).
    [Crossref] [PubMed]

2014 (4)

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (4)

2010 (3)

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

2009 (2)

B. Dong, L. Wei, and D.-P. Zhou, “Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer,” Appl. Opt. 48(33), 6466–6469 (2009).
[Crossref] [PubMed]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

2008 (2)

2007 (1)

2005 (2)

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
[Crossref]

1997 (1)

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

1996 (1)

Bartelt, H.

Bhatia, V.

Canning, J.

Chan, J.

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Chen, K. P.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chen, R.

Chen, T.

Chen, Z.

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

Chiang, K. S.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Choi, E. S.

Choi, H. Y.

Cook, K.

De La Rosa, E.

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

Dianov, E. M.

Dong, B.

Dong, X.

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Du, Y.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Favero, F. C.

Feng, D.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Feng, Z.

Fu, H. Y.

Gu, B.

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Guan, B.-O.

Guo, T.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Hawkins, A. R.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

He, S.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Hu, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Hu, M.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
[Crossref]

Huang, J.

Huang, T.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Ipson, B. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

Jewart, C.

Jiang, L.

Just, F.

Kaur, A.

Ke, T.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Kobelke, J.

Lam, H. Q.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Lan, X.

Lee, B. H.

Li, B.

Li, E.

E. Li and G. D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281(23), 5768–5770 (2008).
[Crossref]

Li, Y.

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

Liu, Y.

Lowder, T. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Mashinsky, V. M.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Meng, Q.

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

Monzon, D.

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

Ni, K.

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

Paek, U.-C.

Park, K. S.

Park, S. J.

Peng, G. D.

E. Li and G. D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281(23), 5768–5770 (2008).
[Crossref]

Qiao, X.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
[Crossref]

Qureshi, K. K.

Rao, Y.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Rong, Q.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
[Crossref]

Rothhardt, M.

Schultz, S. M.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

Selfridge, R. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

Shao, X.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Shum, P.

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Shum, P. P.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Smith, K. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Spittel, R.

Starodumov, A.

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

Su, D.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Sun, H.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Sun, Y.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Tam, H.-Y.

Vengsarkar, A. M.

Wang, M.

Wang, R.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
[Crossref]

Wang, S.

Wei, L.

Wu, C.

Wu, Z.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Xia, T.

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Xia, T.-H.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Xiao, H.

Xu, B.

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

Xue, W.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Yang, H.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Yang, J.

Yuan, L.

Zenteno, L.

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

Zhang, A.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Zhang, A. P.

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Zhang, B.

Zhang, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
[Crossref]

Zhang, Y.

Zheng, Y.

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Zhou, D.-P.

Zhu, J.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Zhu, J.-J.

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Zhu, T.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

IEEE Sens. J. (3)

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

J. Lightwave Technol. (2)

Opt. Commun. (4)

E. Li and G. D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281(23), 5768–5770 (2008).
[Crossref]

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
[Crossref] [PubMed]

H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

C. Wu, H. Y. Fu, K. K. Qureshi, B.-O. Guan, and H.-Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
[Crossref] [PubMed]

T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
[Crossref] [PubMed]

L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
[Crossref] [PubMed]

L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
[Crossref] [PubMed]

Other (1)

N. Hirayama and Y. Sano, “Fiber Bragg grating temperature sensor for practical use,” ISA. T 39, 169 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Experimental setup of Ge-fiber based sensor, (b) Intensity distribution and (c) normalized intensity for light coupling from SMF to Ge-fiber.
Fig. 2
Fig. 2 (a) Measured spectra with different length of Ge-fiber. (b) Free spectrum range against length of Ge-fiber. (c) Spatial frequency spectrum of above interference (Length = 1.3 mm).
Fig. 3
Fig. 3 Measured spectra of the Ge-fiber based temperature sensor under different temperatures.
Fig. 4
Fig. 4 (a) Wavelength of dip A to C against temperature. (b) Stability test at various temperature (@ dip B).

Tables (3)

Tables Icon

Table 1 Parameters of Ge-fiber and single mode fiber.

Tables Icon

Table 2 Effective refractive indices of modes that may propagate in the Ge-fiber.

Tables Icon

Table 3 Comparison of optical fiber temperature sensors based on similar designs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F S R = λ 2 2 Δ n e f f L
Δ λ λ = [ d L L d T + d Δ n e f f Δ n e f f d T ] Δ T

Metrics