Abstract

We report the first continuous-variable quantum key distribution (CVQKD) experiment to enable the creation of 1 Mbps secure key rate over 25 km standard telecom fiber in a coarse wavelength division multiplexers (CWDM) environment. The result is achieved with two major technological advances: the use of a 1 GHz shot-noise-limited homodyne detector and the implementation of a 50 MHz clock system. The excess noise due to noise photons from local oscillator and classical data channels in CWDM is controlled effectively. We note that the experimental verification of high-bit-rate CVQKD in the multiplexing environment is a significant step closer toward large-scale deployment in fiber networks.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High key rate continuous-variable quantum key distribution with a real local oscillator

Tao Wang, Peng Huang, Yingming Zhou, Weiqi Liu, Hongxin Ma, Shiyu Wang, and Guihua Zeng
Opt. Express 26(3) 2794-2806 (2018)

A 24 km fiber-based discretely signaled continuous variable quantum key distribution system

Quyen Dinh Xuan, Zheshen Zhang, and Paul L. Voss
Opt. Express 17(26) 24244-24249 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. B. Samuel and V. L. Peter, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005).
    [Crossref]
  2. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
    [Crossref]
  3. F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
    [Crossref] [PubMed]
  4. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Serf, and P. Grangier,“Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
    [Crossref] [PubMed]
  5. A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
    [Crossref]
  6. R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
    [Crossref] [PubMed]
  7. M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
    [Crossref] [PubMed]
  8. R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
    [Crossref] [PubMed]
  9. A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
    [Crossref]
  10. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
    [Crossref] [PubMed]
  11. A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
    [Crossref] [PubMed]
  12. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
    [Crossref]
  13. K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
    [Crossref]
  14. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
    [Crossref]
  15. Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
    [Crossref]
  16. D. Huang, J. Fang, C. Wang, G. Q. He, P. Huang, R. H. Yang, and G. H. Zeng, “A wideband balanced homodyne detector for high speed continuous variable quantum key distribution systems,” 3rd international conference on quantum cryptography, Waterloo, Canada, 5–9 Aug. 2013.
  17. P. Jouguet and S. Kunz-Jacques, “High performance error correction for quantum key distribution using polar codes,” Quantum Inf. Comput. 14, 329–338 (2014).
  18. P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
    [Crossref]
  19. S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
    [Crossref]
  20. P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
    [Crossref] [PubMed]
  21. S. Ast, M. Mehmet, and R. Schnabel, “High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity,” Opt. Express 21, 13572–13579 (2013).
    [Crossref] [PubMed]
  22. S. Ast, A. Samblowski, M. Mehmet, S. Steinlechner, T. Eberle, and R. Schnabel, “Continuous-wave nonclassical light with gigahertz squeezing bandwidth,” Opt. Lett. 37, 2367–2369 (2012).
    [Crossref] [PubMed]
  23. J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
    [Crossref]
  24. P. Huang, G. Q. He, and G. H. Zeng, “Bound on noise of coherent source for secure continuous-variable quantum key distribution,” Int. J. Theor. Phys. 52, 1572–1582 (2013).
    [Crossref]
  25. P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
    [Crossref]
  26. Y. Shen, X. Peng, J. Yang, and H. Guo, “Continuous-variable quantum key distribution with Gaussian source noise,” Phys. Rev. A 83, 052304 (2011).
    [Crossref]
  27. H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements,” Opt. Lett. 26, 1714–1716 (2001).
    [Crossref]
  28. R. Okubo, M. Hirano, Y. Zhang, and T. Hirano, “Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz,” Opt. Lett. 33, 1458–1460 (2008).
    [Crossref] [PubMed]
  29. B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12, 103042 (2010).
    [Crossref]
  30. R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” arXiv preprint arXiv:1412.1403 (2014).
  31. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
    [Crossref]
  32. K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
  33. J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
    [Crossref]
  34. Q. D. Xuan, Z. S. Zhang, and P. L. Voss, “A 24 km fiber-based discretely signaled continuous variable quantum key distribution systems,” Opt. Express 17, 24244 (2009).
    [Crossref]
  35. D. K. Lin, D. Huang, P. Huang, J. Y. Peng, and G. H. Zeng, “High performance reconciliation for continuous-variable quantum key distribution with LDPC code,” Int. J. Quantum Inform. 13, 1550010 (2015).
    [Crossref]
  36. IEEE 10GBASE-ER 802.3ae-2002.

2015 (2)

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
[Crossref] [PubMed]

D. K. Lin, D. Huang, P. Huang, J. Y. Peng, and G. H. Zeng, “High performance reconciliation for continuous-variable quantum key distribution with LDPC code,” Int. J. Quantum Inform. 13, 1550010 (2015).
[Crossref]

2014 (2)

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

P. Jouguet and S. Kunz-Jacques, “High performance error correction for quantum key distribution using polar codes,” Quantum Inf. Comput. 14, 329–338 (2014).

2013 (3)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Huang, G. Q. He, and G. H. Zeng, “Bound on noise of coherent source for secure continuous-variable quantum key distribution,” Int. J. Theor. Phys. 52, 1572–1582 (2013).
[Crossref]

S. Ast, M. Mehmet, and R. Schnabel, “High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity,” Opt. Express 21, 13572–13579 (2013).
[Crossref] [PubMed]

2012 (6)

S. Ast, A. Samblowski, M. Mehmet, S. Steinlechner, T. Eberle, and R. Schnabel, “Continuous-wave nonclassical light with gigahertz squeezing bandwidth,” Opt. Lett. 37, 2367–2369 (2012).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

2011 (3)

P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
[Crossref]

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Y. Shen, X. Peng, J. Yang, and H. Guo, “Continuous-variable quantum key distribution with Gaussian source noise,” Phys. Rev. A 83, 052304 (2011).
[Crossref]

2010 (3)

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12, 103042 (2010).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

2009 (3)

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

Q. D. Xuan, Z. S. Zhang, and P. L. Voss, “A 24 km fiber-based discretely signaled continuous variable quantum key distribution systems,” Opt. Express 17, 24244 (2009).
[Crossref]

2008 (2)

R. Okubo, M. Hirano, Y. Zhang, and T. Hirano, “Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz,” Opt. Lett. 33, 1458–1460 (2008).
[Crossref] [PubMed]

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

2007 (2)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

2006 (2)

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

2005 (2)

L. B. Samuel and V. L. Peter, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005).
[Crossref]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

2003 (1)

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Serf, and P. Grangier,“Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

2002 (1)

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

2001 (1)

Acín, A.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

Aichele, T.

Alléaume, R.

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” arXiv preprint arXiv:1412.1403 (2014).

Ast, S.

Berta, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Bloch, M.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

Boutros, J.

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

Brouri, R.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Serf, and P. Grangier,“Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

Chi, Y. M.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Choi, I.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Cirac, J. I.

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

Debuisschert, T.

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

Diamanti, E.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

Dixon, A. R.

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Dynes, J. F.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Eberle, T.

Eraerds, P.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Fang, J.

D. Huang, J. Fang, C. Wang, G. Q. He, P. Huang, R. H. Yang, and G. H. Zeng, “A wideband balanced homodyne detector for high speed continuous variable quantum key distribution systems,” 3rd international conference on quantum cryptography, Waterloo, Canada, 5–9 Aug. 2013.

Fossier, S.

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

Franz, T.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Furrer, F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Garcia-Patron, R.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

García-Patrón, R.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

Gisin, N.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Serf, and P. Grangier,“Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Grosshans, F.

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Serf, and P. Grangier,“Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Guo, H.

Y. Shen, X. Peng, J. Yang, and H. Guo, “Continuous-variable quantum key distribution with Gaussian source noise,” Phys. Rev. A 83, 052304 (2011).
[Crossref]

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Hansen, H.

He, G. Q.

P. Huang, G. Q. He, and G. H. Zeng, “Bound on noise of coherent source for secure continuous-variable quantum key distribution,” Int. J. Theor. Phys. 52, 1572–1582 (2013).
[Crossref]

D. Huang, J. Fang, C. Wang, G. Q. He, P. Huang, R. H. Yang, and G. H. Zeng, “A wideband balanced homodyne detector for high speed continuous variable quantum key distribution systems,” 3rd international conference on quantum cryptography, Waterloo, Canada, 5–9 Aug. 2013.

Hettich, C.

Hirano, M.

Hirano, T.

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Huang, D.

D. K. Lin, D. Huang, P. Huang, J. Y. Peng, and G. H. Zeng, “High performance reconciliation for continuous-variable quantum key distribution with LDPC code,” Int. J. Quantum Inform. 13, 1550010 (2015).
[Crossref]

D. Huang, J. Fang, C. Wang, G. Q. He, P. Huang, R. H. Yang, and G. H. Zeng, “A wideband balanced homodyne detector for high speed continuous variable quantum key distribution systems,” 3rd international conference on quantum cryptography, Waterloo, Canada, 5–9 Aug. 2013.

Huang, P.

D. K. Lin, D. Huang, P. Huang, J. Y. Peng, and G. H. Zeng, “High performance reconciliation for continuous-variable quantum key distribution with LDPC code,” Int. J. Quantum Inform. 13, 1550010 (2015).
[Crossref]

P. Huang, G. Q. He, and G. H. Zeng, “Bound on noise of coherent source for secure continuous-variable quantum key distribution,” Int. J. Theor. Phys. 52, 1572–1582 (2013).
[Crossref]

D. Huang, J. Fang, C. Wang, G. Q. He, P. Huang, R. H. Yang, and G. H. Zeng, “A wideband balanced homodyne detector for high speed continuous variable quantum key distribution systems,” 3rd international conference on quantum cryptography, Waterloo, Canada, 5–9 Aug. 2013.

Jouguet, P.

P. Jouguet and S. Kunz-Jacques, “High performance error correction for quantum key distribution using polar codes,” Quantum Inf. Comput. 14, 329–338 (2014).

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
[Crossref]

Karpov, E.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

Kumar, R.

R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” arXiv preprint arXiv:1412.1403 (2014).

Kunz-Jacques, S.

P. Jouguet and S. Kunz-Jacques, “High performance error correction for quantum key distribution using polar codes,” Quantum Inf. Comput. 14, 329–338 (2014).

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
[Crossref]

Legré, M.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Leverrier, A.

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

Lin, D. K.

D. K. Lin, D. Huang, P. Huang, J. Y. Peng, and G. H. Zeng, “High performance reconciliation for continuous-variable quantum key distribution with LDPC code,” Int. J. Quantum Inform. 13, 1550010 (2015).
[Crossref]

Lloyd, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Lo, H. K.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12, 103042 (2010).
[Crossref]

Lodahl, P.

Lodewyck, J.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

Lucamarini, M.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

Lvovsky, A. I.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements,” Opt. Lett. 26, 1714–1716 (2001).
[Crossref]

McLaughlin, S. W.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

Mehmet, M.

Mlynek, J.

Nam, S. W.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Navascués, M.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

Okubo, R.

Pache, P.

Painchault, P.

Patel, K. A.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Peng, J. Y.

D. K. Lin, D. Huang, P. Huang, J. Y. Peng, and G. H. Zeng, “High performance reconciliation for continuous-variable quantum key distribution with LDPC code,” Int. J. Quantum Inform. 13, 1550010 (2015).
[Crossref]

Peng, X.

Y. Shen, X. Peng, J. Yang, and H. Guo, “Continuous-variable quantum key distribution with Gaussian source noise,” Phys. Rev. A 83, 052304 (2011).
[Crossref]

Penty, R. V.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Peter, V. L.

L. B. Samuel and V. L. Peter, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005).
[Crossref]

Pirandola, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Qi, B.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12, 103042 (2010).
[Crossref]

Qian, L.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12, 103042 (2010).
[Crossref]

Qin, H.

R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” arXiv preprint arXiv:1412.1403 (2014).

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Renner, R.

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

Samblowski, A.

Samuel, L. B.

L. B. Samuel and V. L. Peter, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005).
[Crossref]

Schiller, S.

Schnabel, R.

Scholz, V. B.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Serf, N. J.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Serf, and P. Grangier,“Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Sharpe, A. W.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Shen, Y.

Y. Shen, X. Peng, J. Yang, and H. Guo, “Continuous-variable quantum key distribution with Gaussian source noise,” Phys. Rev. A 83, 052304 (2011).
[Crossref]

Shields, A. J.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Steinlechner, S.

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Tian, L.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Tomamichel, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Tualle-Brouri, R.

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

Van Assche, G.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Serf, and P. Grangier,“Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

Villing, A.

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

Voss, P. L.

Walenta, N.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Wang, C.

D. Huang, J. Fang, C. Wang, G. Q. He, P. Huang, R. H. Yang, and G. H. Zeng, “A wideband balanced homodyne detector for high speed continuous variable quantum key distribution systems,” 3rd international conference on quantum cryptography, Waterloo, Canada, 5–9 Aug. 2013.

Weedbrook, C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Wenger, J.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Serf, and P. Grangier,“Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

Werner, R. F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Xuan, Q. D.

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Yang, J.

Y. Shen, X. Peng, J. Yang, and H. Guo, “Continuous-variable quantum key distribution with Gaussian source noise,” Phys. Rev. A 83, 052304 (2011).
[Crossref]

Yang, R. H.

D. Huang, J. Fang, C. Wang, G. Q. He, P. Huang, R. H. Yang, and G. H. Zeng, “A wideband balanced homodyne detector for high speed continuous variable quantum key distribution systems,” 3rd international conference on quantum cryptography, Waterloo, Canada, 5–9 Aug. 2013.

Youn, S. H.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Yuan, Z. L.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Zbinden, H.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Zémor, G.

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

Zeng, G. H.

D. K. Lin, D. Huang, P. Huang, J. Y. Peng, and G. H. Zeng, “High performance reconciliation for continuous-variable quantum key distribution with LDPC code,” Int. J. Quantum Inform. 13, 1550010 (2015).
[Crossref]

P. Huang, G. Q. He, and G. H. Zeng, “Bound on noise of coherent source for secure continuous-variable quantum key distribution,” Int. J. Theor. Phys. 52, 1572–1582 (2013).
[Crossref]

D. Huang, J. Fang, C. Wang, G. Q. He, P. Huang, R. H. Yang, and G. H. Zeng, “A wideband balanced homodyne detector for high speed continuous variable quantum key distribution systems,” 3rd international conference on quantum cryptography, Waterloo, Canada, 5–9 Aug. 2013.

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Zhang, Y.

Zhang, Z. S.

Zhu, W.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12, 103042 (2010).
[Crossref]

Appl. Phys. Lett. (1)

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

Int. J. Quantum Inform. (1)

D. K. Lin, D. Huang, P. Huang, J. Y. Peng, and G. H. Zeng, “High performance reconciliation for continuous-variable quantum key distribution with LDPC code,” Int. J. Quantum Inform. 13, 1550010 (2015).
[Crossref]

Int. J. Theor. Phys. (1)

P. Huang, G. Q. He, and G. H. Zeng, “Bound on noise of coherent source for secure continuous-variable quantum key distribution,” Int. J. Theor. Phys. 52, 1572–1582 (2013).
[Crossref]

Nat. Photonics (2)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

Nature (1)

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Serf, and P. Grangier,“Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

New J. Phys. (4)

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

B. Qi, W. Zhu, L. Qian, and H. K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys. 12, 103042 (2010).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (7)

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

Y. Shen, X. Peng, J. Yang, and H. Guo, “Continuous-variable quantum key distribution with Gaussian source noise,” Phys. Rev. A 83, 052304 (2011).
[Crossref]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
[Crossref]

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

Phys. Rev. Lett. (6)

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
[Crossref] [PubMed]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Phys. Rev. X (1)

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Quantum Inf. Comput. (1)

P. Jouguet and S. Kunz-Jacques, “High performance error correction for quantum key distribution using polar codes,” Quantum Inf. Comput. 14, 329–338 (2014).

Rev. Mod. Phys. (2)

L. B. Samuel and V. L. Peter, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Other (3)

D. Huang, J. Fang, C. Wang, G. Q. He, P. Huang, R. H. Yang, and G. H. Zeng, “A wideband balanced homodyne detector for high speed continuous variable quantum key distribution systems,” 3rd international conference on quantum cryptography, Waterloo, Canada, 5–9 Aug. 2013.

R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” arXiv preprint arXiv:1412.1403 (2014).

IEEE 10GBASE-ER 802.3ae-2002.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experiment setup of CVQKD. (a) Schematic for multiplexing of quantum transmitter (1550 nm), data transceiver (forward 1590 nm and backward 1610 nm) and clock (1570 nm). (b) Quantum transmitter. (c) Quantum receiver. MUX, multiplexer; DEMUX, demultiplexer; CW laser, continuous wave laser; AM, amplitude modulator; BS, beam splitter; VOA, variable optical attenuator; PM, phase modulator; PD, photodetector; PBS, polarizing beamsplitter; DL, delay line; MVODL, manual variable optical delay line; FM, faraday mirror; DPC, dynamic polarization controller.
Fig. 2
Fig. 2 (a) Shot noise characterization of homodyne detector in frequency domain. Top red trace, shot noise is measured at LO power of 0.5 mW. Bottom blue trace, electronic noise is measured without LO. The noise clearance between shot noise and electronic noise ranges from about 6 dB at 50 MHz, 4 dB at 0.2 GHz, and slowly degrades to and 1 dB at 1 GHz. (b) Pulse characterization with 300 ps optical pulse input. The blue circles are measured with a 9.5 GHz commercial detector and a 40 GS/s oscilloscope. The red squares are measured with our 1 GHz shot-noise-limited homodyne detector and a 5 GS/s analog digital converter.
Fig. 3
Fig. 3 Excess noise measurement. The lower red circles are measured at 25 km with finite-size block size of 108. The effective excess noise under worst-case estimator (red square) is employed to compute the final secret key rate. The red line defines the tolerable maximal value of excess noise at 25 km.
Fig. 4
Fig. 4 Secret key rate under general collective attacks in finite-size scenarios. From left to right, curves correspond, respectively, to block lengths of N = 108, 109 and infinite. The blue points are the previous experiment resluts [14, 19, 20, 33, 34]. The red square is our experiment result, which is calculated from a group of time-varying excess noise. The modulation variance VA is optimized, the quantum efficiency ηB is 0.5, the electronic noise υel is 0.3 (in shot noise units), the practical reconciliation efficiency β is 93%, the security parameter of privacy amplification procedure is set as 10−10.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε in = 2 N ^ noise in η D η B T ,
N ^ WDM SASRS = 1 2 [ λ Q 3 h c 2 γ η D ( P fwd in L e α L + P bwd in 1 e α L 2 α ) ] ,
K = n R N [ β I AB χ BE Δ ( n ) ] ,

Metrics