Abstract

We report on numerical design optimization of hollow-core anti-resonant fibers with the aim of reducing transmission losses. We show that re-arranging the nested anti-resonant tubes in the cladding to be adjacent has the effect of significantly reducing leakage as well as bending losses, and for reaching high loss extinction ratios between the fundamental mode and higher order modes. We investigate two versions of the proposed design, one optimized for the mid-IR and another scaled down version for the near-IR and compare them in detail with previously proposed anti-resonant fiber designs including nested elements. Our proposed design is superior with respect to obtaining the lowest leakage losses and the bend losses are also much lower than for the previous designs. Leakage losses as low as 0.0015 dB/km and bending losses of 0.006 dB/km at 5 cm bending radius are predicted at the ytterbium lasing wavelength 1.06 µm. When optimizing the higher-order-mode extinction ratio, the low leakage loss is sacrificed to get an effective single-mode behavior of the fiber. We show that the higher-order-mode extinction ratio is more than 1500 in the range 1.0-1.1 µm around the ytterbium lasing wavelength, while in the mid-IR it can be over 100 around λ = 2.94 μm. This is higher than the previously considered structures in the literature using nested tubes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-mode, low loss hollow-core anti-resonant fiber designs

Md. Selim Habib, J. E. Antonio-Lopez, Christos Markos, Axel Schülzgen, and Rodrigo Amezcua-Correa
Opt. Express 27(4) 3824-3836 (2019)

Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements

Md. Selim Habib, Ole Bang, and Morten Bache
Opt. Express 24(8) 8429-8436 (2016)

Nested antiresonant nodeless hollow core fiber

Francesco Poletti
Opt. Express 22(20) 23807-23828 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  2. G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004).
    [Crossref] [PubMed]
  3. F. Gèrôme, P. Dupriez, J. Clowes, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16(4), 2381–2386 (2008).
    [Crossref] [PubMed]
  4. F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express 15(12), 7126–7131 (2007).
    [Crossref] [PubMed]
  5. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
    [Crossref] [PubMed]
  6. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
    [Crossref] [PubMed]
  7. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236 (2005).
    [Crossref] [PubMed]
  8. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
    [Crossref]
  9. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  10. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
    [Crossref] [PubMed]
  11. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref] [PubMed]
  12. Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Lasers Electro-Optics (CLEO) and Quantum Electron. Laser Sci. (QELS) 2010, paper CPDB4.
  13. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [PubMed]
  14. M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
    [Crossref] [PubMed]
  15. Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
    [Crossref]
  16. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  17. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  18. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref] [PubMed]
  19. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
    [Crossref] [PubMed]
  20. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
    [Crossref] [PubMed]
  21. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref] [PubMed]
  22. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
    [Crossref] [PubMed]
  23. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
    [Crossref]
  24. M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
    [Crossref]
  25. W. Belardi, “New possibilities with hollow core antiresonant fibers,” arXiv:1501.00586, 2015.

2014 (3)

2013 (4)

2012 (1)

2011 (5)

2008 (1)

2007 (3)

F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express 15(12), 7126–7131 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

2004 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

1996 (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

1975 (1)

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Alharbi, M.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Anthony, J.

Argyros, A.

Astapovich, M. S.

Beaudou, B.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Belardi, W.

Benabid, F.

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

Biriukov, A. S.

Birks, T. A.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Bouwmans, G.

Bradley, T.

Bradley, T. D.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Churbanov, M. F.

Clowes, J.

Cook, K.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Debord, B.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

Dianov, E. M.

Dupriez, P.

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Farr, L.

Fourcade-Dutin, C.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

George, A. K.

Gerôme, F.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Gérôme, F.

Gèrôme, F.

Ghosh, D.

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Hand, D. P.

Harris, J.

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Heiblum, M.

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Humbert, G.

Knight, J.

Knight, J. C.

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

F. Gèrôme, P. Dupriez, J. Clowes, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16(4), 2381–2386 (2008).
[Crossref] [PubMed]

F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express 15(12), 7126–7131 (2007).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Kolyadin, A. N.

Kosolapov, A. F.

Leonhardt, R.

Leon-Saval, S. G.

Light, P. S.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

Maier, R. R. J.

Mangan, B.

Mangan, B. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Mason, M. W.

Plotnichenko, V. G.

Poletti, F.

Pryamikov, A. D.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Roberts, P.

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[PubMed]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Russell, P.

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Sabert, H.

Semjonov, S. L.

Shephard, J. D.

Shiryaev, V. S.

Snopatin, G. E.

St. J. Russell, P.

Tomlinson, A.

Urich, A.

Vincetti, L.

Wadsworth, W. J.

Wang, Y.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Wang, Y. Y.

Wheeler, N. V.

Williams, D.

Williams, D. P.

Yu, F.

Biomed. Opt. Express (1)

High Power Laser Sci. Eng. (1)

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Opt. Express (12)

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref] [PubMed]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236 (2005).
[Crossref] [PubMed]

G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004).
[Crossref] [PubMed]

F. Gèrôme, P. Dupriez, J. Clowes, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16(4), 2381–2386 (2008).
[Crossref] [PubMed]

F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express 15(12), 7126–7131 (2007).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Other (2)

Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Lasers Electro-Optics (CLEO) and Quantum Electron. Laser Sci. (QELS) 2010, paper CPDB4.

W. Belardi, “New possibilities with hollow core antiresonant fibers,” arXiv:1501.00586, 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Geometries considered in the mid-IR simulations. (a) Typical optimized HC-AR fiber design with six circular tubes; (b)-(c) the nested (“1AE”, i.e. one anti-resonant element) and nested-in-nested (“2AE”, i.e. two anti-resonant elements) designs proposed in [21] in which d1 = 25 µm and d2 = d1/2; (d) our proposed adjacent nested anti-resonant (ANAR) structure with three adjacent nested anti-resonant tubes. All fibers have the same core radius Rc = 47 µm and uniform silica strut thickness t = 1.26 µm.
Fig. 2
Fig. 2 Calculated loss spectra. The broken lines indicate leakage loss while solid lines show the transmission loss where the material loss of silica is included. All structures have the same core radius Rc = 47 µm and uniform silica strut thickness t = 1.26 µm. The color of the frame corresponds to the color of the line in the plot. The thin dotted line indicates the wavelength for which the losses are optimized.
Fig. 3
Fig. 3 Calculated bending loss at 2.94 µm versus bending radius. Note that black solid and broken lines are coincident. The contour plots of the fundamental air-core mode distribution are shown in the right hand side for a 10 cm bending radius. The color of the frame corresponds to the color of the line in the plot.
Fig. 4
Fig. 4 Calculated HOMER of the proposed ANAR with different values of di as a function of Φ, which is the angle between adjacent inner tubes 2 and 3 and tube 1, while keeping the position of tube 1 fixed as before. The simulations are performed at λ = 2.94 µm.
Fig. 5
Fig. 5 Effect of changing the inner air-hole diameter di with a fixed Rc = 47 µm, t = 1.26 µm, do = 86 µm, Φ = π/2 and wavelength 2.94 µm. Contour plots of the first five core modes are shown on the left hand side for 18.4 μm inner air-hole diameter (where the maximum HOMER value is found). The color of the frame corresponds to the color of the line in the plot.
Fig. 6
Fig. 6 Calculated (a) transmission loss and (b) HOMER as a function of di for 1AE, 2AE and ANAR structures. The simulations are performed at λ = 2.94 µm.
Fig. 7
Fig. 7 Wavelength dependence of refractive index, leakage loss, transmission loss and HOMER with a fixed Rc = 47 µm, t = 1.26 µm, do = 86 µm, and Φ = 109 degrees for a 18.4 µm inner air-hole diameter. HOMER was calculated with losses in silica taken into account, i.e. using the transmission loss curves.
Fig. 8
Fig. 8 Comparing the wavelength dependence of (a) transmission loss of the FM and (b) HOMER for all the considered structures. The ANAR parameters are the same as Fig. 7.
Fig. 9
Fig. 9 Calculated leakage loss spectra (a) and bending loss (b) as a function of bending radius at λ = 1.06 µm. The fiber parameters have been scaled down by a factor of 3 ( t =t/3 , R c = R c /3 , d o = d o /3 , and d i = d i /3 ) and in the ANAR design Φ = π/2 was used.
Fig. 10
Fig. 10 Calculated HOMER of the proposed ANAR structure versus diameter di and angle Φ (a). HOMER versus di, for the 1AE and 2AE structures and the ANAR design with Φ = 90° and optimum Φ = 109°. Leakage loss (c) and bending loss (d) for the ANAR design optimized for maximum HOMER, a design chosen to give an intermediate HOMER, and a design optimized to give the lowest leakage loss. The simulations of (a), (b), and (d) are performed at λ = 1.06 µm.
Fig. 11
Fig. 11 Wavelength dependence of (a) leakage loss and (b) HOMER for the optimized parameters. The optimum design parameters are: t =t/3 , R c = R c /3 , d o = d o /3 , and di = 6µm,12µm, and 11.6µm for ANAR, 1AE, and 2AE respectively, and in the ANAR design Φ = 109 degrees was used.
Fig. 12
Fig. 12 Numerically found transmission bands in the visible to mid-IR spectral region for the ANAR fiber with Rc = 47 µm, t = 1.26 µm, di = 32 μm, do = 86 μm, and Φ = 90 degrees. The gray areas indicate high loss regions. The broken blue line indicates leakage loss while solid red line shows the transmission loss where the material loss of silica is included.
Fig. 13
Fig. 13 Predicted fabrication tolerances of the proposed ANAR fiber. The leakage loss is almost stable between 0° to 45°. The simulations were performed at λ = 2.94 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n eq =n( x,y )exp(x/ R b )
λ c,m =( 2/m )t n 2 1

Metrics