Abstract

Morphing refers to the smooth transition from a specific shape into another one, in which the initial and final shapes can be significantly different. A typical illustration is to turn a cube into a sphere by continuous change of shape curvatures. Here, we demonstrate a process of laser-induced morphing, driven by surface tension and thermally-controlled viscosity. As a proof-of-concept, we turn 3D glass structures fabricated by a femtosecond laser into other shapes by locally heating up the structure with a feedback-controlled CO2 laser. We further show that this laser morphing process can be accurately modelled and predicted.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping

Charlie Y. J. Ying, Collin L. Sones, Anna C. Peacock, Florian Johann, Elisabeth Soergel, Robert W. Eason, Mikhail N. Zervas, and Sakellaris Mailis
Opt. Express 18(11) 11508-11513 (2010)

Laser micromachining of efficient fiber microlenses

H. M. Presby, A. F. Benner, and C. A. Edwards
Appl. Opt. 29(18) 2692-2695 (1990)

Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser

Keiron Boyd, Heike Ebendorff-Heidepriem, Tanya M. Monro, and Jesper Munch
Opt. Mater. Express 2(8) 1101-1110 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [Crossref] [PubMed]
  2. Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D micro optical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys. A. 85, 11–14 (2006).
  3. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
    [Crossref] [PubMed]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  5. K. Minoshima, A. Kowalevicz, E. Ippen, and J. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express 10(15), 645–652 (2002).
    [Crossref] [PubMed]
  6. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
    [Crossref] [PubMed]
  7. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” Proc. MRS 782, 63–68 (2003).
    [Crossref]
  8. A. Schaap and Y. Bellouard, “Molding topologically-complex 3D polymer microstructures from femtosecond laser machined glass,” Opt. Mater. Express 3(9), 1428–1437 (2013).
    [Crossref]
  9. V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical Etching,” Micromachines 5(3), 697–710 (2014).
    [Crossref]
  10. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982).
    [Crossref] [PubMed]
  11. Y. M. Xiao and M. Bass, “Thermal stress limitations to laser fire polishing of glasses,” Appl. Opt. 22(18), 2933–2936 (1983).
    [Crossref] [PubMed]
  12. F. Laguarta, N. Lupon, and J. Armengol, “Optical glass polishing by controlled laser surface-heat treatment,” Appl. Opt. 33(27), 6508–6513 (1994).
    [Crossref] [PubMed]
  13. F. Laguarta, N. B. Lupon, F. Vega, and J. Armengol, “Laser application for optical glass polishing,” in Optical Instrumentation & Systems Design (International Society for Optics and Photonics, 1996), pp. 603–610.
  14. M. Udrea, H. Orun, and A. Alacakir, “Laser polishing of optical fiber end surface,” Opt. Eng. 40(9), 2026–2030 (2001).
    [Crossref]
  15. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  16. M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
  17. S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, and L. Castañeda-Escobar, “Rod and spherical silica microlenses fabricated by CO2 laser melting,” Appl. Opt. 44(21), 4547–4556 (2005).
    [Crossref] [PubMed]
  18. K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006).
    [Crossref] [PubMed]
  19. C. Kim, I.-B. Sohn, Y. J. Lee, C. C. Byeon, S. Y. Kim, H. Park, and H. Lee, “Fabrication of a fused silica based mold for the microlenticular lens array using a femtosecond laser and a CO2 laser,” Opt. Mater. Express 4(11), 2233–2240 (2014).
    [Crossref]
  20. J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” Int. J. Optomech. 9(2), 187–194 (2015).
    [Crossref]
  21. W. D. Kingery, “Thermal conductivity: XII, Temperature dependence of conductivity for single-phase ceramics,” J. Am. Ceram. Soc. 38(7), 251–255 (1955).
    [Crossref]
  22. K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
    [Crossref]
  23. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
    [Crossref]
  24. P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett. 101(21), 211908 (2012).
    [Crossref]
  25. R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
    [Crossref]
  26. Heraeus Quarzglas - Thermal properties,” http://heraeus-Quarzglas.com/en/quarzglas/thermalproperties/Thermal_properties.aspx .
  27. K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2(8), 1101–1110 (2012).
    [Crossref]
  28. P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys. 96(6), 3221–3227 (2004).
    [Crossref]
  29. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO(2) laser wavelengths,” Appl. Opt. 26(9), 1728–1731 (1987).
    [Crossref] [PubMed]
  30. M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
    [Crossref]
  31. A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
    [Crossref]
  32. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
    [Crossref] [PubMed]
  33. T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble-containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
    [Crossref]
  34. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [Crossref] [PubMed]
  35. O. Rozenbaum, D. D. S. Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70(10), 4020–4025 (1999).
    [Crossref]

2015 (2)

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” Int. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble-containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
[Crossref]

2014 (2)

C. Kim, I.-B. Sohn, Y. J. Lee, C. C. Byeon, S. Y. Kim, H. Park, and H. Lee, “Fabrication of a fused silica based mold for the microlenticular lens array using a femtosecond laser and a CO2 laser,” Opt. Mater. Express 4(11), 2233–2240 (2014).
[Crossref]

V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical Etching,” Micromachines 5(3), 697–710 (2014).
[Crossref]

2013 (1)

2012 (3)

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett. 101(21), 211908 (2012).
[Crossref]

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2(8), 1101–1110 (2012).
[Crossref]

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
[Crossref]

2009 (1)

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]

2007 (1)

2006 (2)

K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006).
[Crossref] [PubMed]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D micro optical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys. A. 85, 11–14 (2006).

2005 (2)

2004 (2)

2003 (3)

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” Proc. MRS 782, 63–68 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).

2002 (2)

2001 (2)

2000 (1)

1999 (1)

O. Rozenbaum, D. D. S. Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70(10), 4020–4025 (1999).
[Crossref]

1997 (1)

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[Crossref]

1996 (1)

1994 (1)

1987 (1)

1983 (1)

1982 (1)

1959 (1)

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[Crossref]

1955 (1)

W. D. Kingery, “Thermal conductivity: XII, Temperature dependence of conductivity for single-phase ceramics,” J. Am. Ceram. Soc. 38(7), 251–255 (1955).
[Crossref]

Agarwal, A.

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[Crossref]

Alacakir, A.

M. Udrea, H. Orun, and A. Alacakir, “Laser polishing of optical fiber end surface,” Opt. Eng. 40(9), 2026–2030 (2001).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Armengol, J.

Auger, Y.

O. Rozenbaum, D. D. S. Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70(10), 4020–4025 (1999).
[Crossref]

Bado, P.

Baker, H. J.

Bass, M.

Bellouard, Y.

Bisson, S. E.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]

Bouchut, P.

P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys. 96(6), 3221–3227 (2004).
[Crossref]

Boyd, K.

Byeon, C. C.

Cai, M.

Calixto, S.

Castañeda-Escobar, L.

Cheng, Y.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” Int. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D micro optical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys. A. 85, 11–14 (2006).

Chermanne, S.

O. Rozenbaum, D. D. S. Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70(10), 4020–4025 (1999).
[Crossref]

Combis, P.

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett. 101(21), 211908 (2012).
[Crossref]

Connolly, T. J.

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[Crossref]

Cormont, P.

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett. 101(21), 211908 (2012).
[Crossref]

Davis, K. M.

Decruppe, D.

P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys. 96(6), 3221–3227 (2004).
[Crossref]

Delrive, L.

P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys. 96(6), 3221–3227 (2004).
[Crossref]

Doremus, R. H.

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
[Crossref]

Draggoo, V. G.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]

Dugan, M.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
[Crossref] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” Proc. MRS 782, 63–68 (2003).
[Crossref]

Ebendorff-Heidepriem, H.

Echegut, P.

O. Rozenbaum, D. D. S. Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70(10), 4020–4025 (1999).
[Crossref]

Elhadj, S.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]

Fang, Z.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” Int. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Feit, M. D.

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).

Fujimoto, J.

Gallais, L.

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett. 101(21), 211908 (2012).
[Crossref]

Hall, D. R.

Hebert, D.

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett. 101(21), 211908 (2012).
[Crossref]

Hirao, K.

Ippen, E.

Jonasz, M.

Juodkazis, S.

Kim, C.

Kim, S. Y.

Kingery, W. D.

W. D. Kingery, “Thermal conductivity: XII, Temperature dependence of conductivity for single-phase ceramics,” J. Am. Ceram. Soc. 38(7), 251–255 (1955).
[Crossref]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Kishi, T.

T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble-containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
[Crossref]

Kitamura, R.

Kowalevicz, A.

Kumagai, T.

T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble-containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
[Crossref]

Laguarta, F.

Lancry, M.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
[Crossref]

Lee, H.

Lee, Y. J.

Liao, Y.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” Int. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Lin, J.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” Int. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Lowdermilk, W. H.

Lupon, N.

Marcinkevicius, A.

Matsuo, S.

Matthews, M. J.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]

McLachlan, A. D.

Meneses, D. D. S.

O. Rozenbaum, D. D. S. Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70(10), 4020–4025 (1999).
[Crossref]

Meyer, F. P.

Midorikawa, K.

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D micro optical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys. A. 85, 11–14 (2006).

Milam, D.

Minoshima, K.

Misawa, H.

Miura, K.

Miwa, M.

Monro, T. M.

Munch, J.

Nishii, J.

Nowak, K. M.

Orun, H.

M. Udrea, H. Orun, and A. Alacakir, “Laser polishing of optical fiber end surface,” Opt. Eng. 40(9), 2026–2030 (2001).
[Crossref]

Painter, O.

Park, H.

Pilon, L.

Poumellec, B.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
[Crossref]

Qiao, L.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” Int. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Régnier, E.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
[Crossref]

Robin, L.

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett. 101(21), 211908 (2012).
[Crossref]

Rosete-Aguilar, M.

Rozenbaum, O.

O. Rozenbaum, D. D. S. Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70(10), 4020–4025 (1999).
[Crossref]

Rubenchik, A. M.

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).

Rullier, J.-L.

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett. 101(21), 211908 (2012).
[Crossref]

Said, A.

Sanchez-Marin, F. J.

Schaap, A.

Sercel, P. C.

Sohn, I.-B.

Song, J.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” Int. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Sugimoto, N.

Sugioka, K.

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D micro optical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys. A. 85, 11–14 (2006).

Tang, J.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” Int. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Temple, P. A.

Tielen, V.

V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical Etching,” Micromachines 5(3), 697–710 (2014).
[Crossref]

Tomozawa, M.

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[Crossref]

Tsai, H. L.

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D micro optical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys. A. 85, 11–14 (2006).

Udrea, M.

M. Udrea, H. Orun, and A. Alacakir, “Laser polishing of optical fiber end surface,” Opt. Eng. 40(9), 2026–2030 (2001).
[Crossref]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
[Crossref] [PubMed]

Wang, M.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” Int. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Watanabe, M.

Wray, K. L.

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[Crossref]

Xiao, Y. M.

Yang, S. T.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]

Yano, T.

T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble-containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
[Crossref]

Appl. Opt. (7)

Appl. Phys. A. (1)

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D micro optical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys. A. 85, 11–14 (2006).

Appl. Phys. Lett. (1)

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett. 101(21), 211908 (2012).
[Crossref]

Int. J. Optomech. (1)

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” Int. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

W. D. Kingery, “Thermal conductivity: XII, Temperature dependence of conductivity for single-phase ceramics,” J. Am. Ceram. Soc. 38(7), 251–255 (1955).
[Crossref]

J. Appl. Phys. (5)

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[Crossref]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
[Crossref]

P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys. 96(6), 3221–3227 (2004).
[Crossref]

T. Kumagai, T. Kishi, and T. Yano, “Low threshold lasing of bubble-containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range,” J. Appl. Phys. 117(11), 113104 (2015).
[Crossref]

J. Non-Cryst. Solids (1)

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[Crossref]

Micromachines (1)

V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical Etching,” Micromachines 5(3), 697–710 (2014).
[Crossref]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Eng. (1)

M. Udrea, H. Orun, and A. Alacakir, “Laser polishing of optical fiber end surface,” Opt. Eng. 40(9), 2026–2030 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (3)

Proc. MRS (1)

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” Proc. MRS 782, 63–68 (2003).
[Crossref]

Proc. SPIE (1)

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).

Prog. Mater. Sci. (1)

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012).
[Crossref]

Rev. Sci. Instrum. (1)

O. Rozenbaum, D. D. S. Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum. 70(10), 4020–4025 (1999).
[Crossref]

Other (2)

Heraeus Quarzglas - Thermal properties,” http://heraeus-Quarzglas.com/en/quarzglas/thermalproperties/Thermal_properties.aspx .

F. Laguarta, N. B. Lupon, F. Vega, and J. Armengol, “Laser application for optical glass polishing,” in Optical Instrumentation & Systems Design (International Society for Optics and Photonics, 1996), pp. 603–610.

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (18841 KB)      Media 1
» Visualization 2: MP4 (11820 KB)      Media 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Illustration of the concept of shape morphing. A cube is turning into a sphere by seamless transformation.
Fig. 2
Fig. 2 Laser platforms used for the fabrication. Fused silica patterns are fabricated by femtosecond laser exposure (left) followed by wet etching in HF. After this process, the microstructures are introduced onto the CO2 platform (right) for shape morphing.
Fig. 3
Fig. 3 Fused silica patterns used in the CO2 laser shape morphing experiments. A cube (100 micron square) seated on a pillar (left) and a round pillar (100 micron diameter) with a conical cavity (right).
Fig. 4
Fig. 4 Still frames taken from video footage of the morphing process merged with the numerical model at fixed time intervals. The scale bar on the right corresponds to the mesh color and indicates the temperature. The model accurately covers the whole morphing process, including melting of the pillar, as shown in the last picture. (Visualization 1)
Fig. 5
Fig. 5 Thermal gradient across the microsphere simulated after 60s of heating time (see Fig. 4). The laser was incident on the top of the sphere. Left: Simulated thermal distribution on a projected transverse plane. Right: Simulated surface temperature profile projected along the z-axis.
Fig. 6
Fig. 6 Experimental reproducibility showing the resulting shape of four consecutive experiments. The pictures have been taken after 20 s (+/− 0.2 s) of morphing at 2300 K.
Fig. 7
Fig. 7 Simulation of the morphing of a cube for different temperature set points. The left image depicts the laser irradiance evolution in time, while the right image shows the corresponding object profile after a heating time of 2 s for various set point temperatures. The profile corresponds to the yz-plane of the 3D model.
Fig. 8
Fig. 8 Simulated profile fitted with a circle of 57 µm in radius. The profile is taken at T = 2500 K after a laser heating time of 2s and 10s. As can be seen, the heated profile converges toward a nearly perfect circle after 2s, though some slight distortion can be seen along the negative y direction (this is the coolest zone since the structure is heated from the top by the laser). This distortion disappears after a sufficient heating time (10s in this case).
Fig. 9
Fig. 9 Scanning Electron Microscope images demonstrating the concept of laser morphing (in this case, turning a cube into a sphere). The left image shows a cube, after femtosecond laser exposure and chemical etching, but before heating. The image on the right shows a similar cube after morphing, illustrating the perfect surface quality and sphericity achieved. (The V-marks at the bottom of the images are labels for identification purpose.)
Fig. 10
Fig. 10 Capture of a gas bubble in a glass microstructure containing a conical cavity, which is sealed during the process of laser exposure and structural morphing. The sealed cavity is clearly visible in the middle of the last picture. (Visualization 2)
Fig. 11
Fig. 11 Simulation of the closing of a conical cavity at various time steps. Although the merging of the interface could not be simulated, the model efficiently captures the evolution of the structure during the morphing process and predicts the sealing of the initially open cavity. After temperature calibration, the simulated laser power differed from the measured value by only 3%, thus further demonstrating the accuracy of the model.
Fig. 12
Fig. 12 Comparison between the simulated shape (left side) and profilometry data (right) for a pillar with a conical cavity with a diameter of ~50 μm, after a heating time of 8s at 2120 K. The profilometry data was obtained using a white-light interferometer.

Tables (1)

Tables Icon

Table 1 Parameters for fused silica used in this study for simulating the dynamical structural changes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ ρ C p ( T )[ T t +uT ]=[ k( T )T ]+Q( x,t ) ρ u t ={ pI+μ(T)[ u+ ( u ) T ] }+F(x,t) ρu=0 .
μ( T )= μ 0 e A RT with μ 0 =8.31 10 9 [ Pas ] and A=5.26 10 5 [ 1 Jmol ] .
P abs ( x,t )=[ 1R( n silica , θ x,t ) ] P laser ( x,t ).

Metrics