Abstract

Electrically tunable focusing microlens arrays based on polarization independent optical phase of nano liquid crystal droplets dispersed in polymer matrix are demonstrated. Such an optical medium is optically isotropic which is so-called an optically isotropic liquid crystals (OILC). We not only discuss the optical theory of OILC, but also demonstrate polarization independent optical phase modulation based on the OILC. The experimental results and analytical discussion show that the optical phase of OILC microlens arrays results from mainly orientational birefringence which is much larger than the electric-field–induced birefringence (or Kerr effect). The response time of OILC microlens arrays is fast~5.3ms and the tunable focal length ranges from 3.4 mm to 3.8 mm. The potential applications are light field imaging systems, 3D integrating imaging systems and devices for augment reality.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent and fast tunable microlens array based on blue phase liquid crystals

Shih-Hung Lin, Lin-Song Huang, Chi-Huang Lin, and Chie-Tong Kuo
Opt. Express 22(1) 925-930 (2014)

Polarization independent adaptive microlens with a blue-phase liquid crystal

Yan Li and Shin-Tson Wu
Opt. Express 19(9) 8045-8050 (2011)

Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystals

Chia-Ming Chang, Yi-Hsin Lin, Victor Reshetnyak, Chui Ho Park, Ramesh Manda, and Seung Hee Lee
Opt. Express 25(17) 19807-19821 (2017)

References

  • View by:
  • |
  • |
  • |

  1. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  2. B. Furht, Handbook of augmented reality (Springer, 2011).
  3. H. Ren and S. T. Wu, Introduction to adaptive lenses (Wiley, 2012).
  4. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  5. Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
    [Crossref] [PubMed]
  6. H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
    [Crossref]
  7. M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 3, 505–507 (2006).
  8. D. K. Yang and S. T. Wu, Fundamentals of liquid crystal devices (John Wiley, 2006).
  9. Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [PubMed]
  10. H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
    [Crossref]
  11. H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
    [Crossref]
  12. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
    [Crossref] [PubMed]
  13. H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [PubMed]
  14. Y. S. Tsou, Y. H. Lin, and A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
    [Crossref]
  15. H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
    [Crossref] [PubMed]
  16. X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
    [Crossref] [PubMed]
  17. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
    [Crossref]
  18. Y. H. Lin, H. Ren, and S. T. Wu, “Polarisation-independent liquid crystal devices,” Liq. Cryst. Today 17(1-2), 2–8 (2008).
    [Crossref]
  19. S. T. Wu and D. K. Yang, Reflective liquid crystal displays (Wiley, 2001).
  20. F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
    [Crossref] [PubMed]
  21. Y. H. Lin and Y. S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 110(11), 114516 (2011).
    [Crossref]
  22. H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
    [Crossref]
  23. Y. Tanabe, H. Furue, and J. Hatano, “Optically isotopic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1-3), 41–44 (2005).
    [Crossref]
  24. J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light-scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
    [Crossref]
  25. R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).
  26. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume Holographic Image Storage and Electro-optical Readout in a Polymer-Dispersed Liquid-Crystal Film,” Opt. Lett. 20(11), 1325–1327 (1995).
    [Crossref] [PubMed]
  27. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals(H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [Crossref]
  28. J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
    [Crossref]
  29. J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
    [Crossref]
  30. H. S. Kitzerow, “Blue phase come of age: a review,” Proc. SPIE 7232, 723205 (2009).
  31. Y. H. Lin, H. S. Chen, C. H. Wu, and H. K. Hsu, “Measuring electric-field-induced birefringence in polymer stabilized blue-phase liquid crystals based on phase shift measurements,” J. Appl. Phys. 109(10), 104503 (2011).
    [Crossref]

2015 (1)

2013 (2)

2012 (2)

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[PubMed]

Y. S. Tsou, Y. H. Lin, and A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
[Crossref]

2011 (3)

Y. H. Lin and Y. S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 110(11), 114516 (2011).
[Crossref]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

Y. H. Lin, H. S. Chen, C. H. Wu, and H. K. Hsu, “Measuring electric-field-induced birefringence in polymer stabilized blue-phase liquid crystals based on phase shift measurements,” J. Appl. Phys. 109(10), 104503 (2011).
[Crossref]

2010 (4)

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

2009 (2)

H. S. Kitzerow, “Blue phase come of age: a review,” Proc. SPIE 7232, 723205 (2009).

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

2008 (1)

Y. H. Lin, H. Ren, and S. T. Wu, “Polarisation-independent liquid crystal devices,” Liq. Cryst. Today 17(1-2), 2–8 (2008).
[Crossref]

2006 (3)

H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 3, 505–507 (2006).

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

2005 (4)

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Y. Tanabe, H. Furue, and J. Hatano, “Optically isotopic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1-3), 41–44 (2005).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

2004 (1)

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[Crossref]

2000 (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals(H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

1995 (1)

1993 (1)

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

1986 (1)

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light-scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Adams, W. W.

Asquini, R.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Basile, F.

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

Beccherelli, R.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Bloisi, F.

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

Bunning, T. J.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals(H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume Holographic Image Storage and Electro-optical Readout in a Polymer-Dispersed Liquid-Crystal Film,” Opt. Lett. 20(11), 1325–1327 (1995).
[Crossref] [PubMed]

Cakmakci, O.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Caputo, R.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Chen, H. S.

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[PubMed]

H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

Y. H. Lin, H. S. Chen, C. H. Wu, and H. K. Hsu, “Measuring electric-field-induced birefringence in polymer stabilized blue-phase liquid crystals based on phase shift measurements,” J. Appl. Phys. 109(10), 104503 (2011).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Chen, M. S.

Collings, N.

Crawford, G. P.

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[Crossref]

d’Alessandro, A.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

De Luca, A.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

De Sio, L.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Doane, J. W.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light-scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Donisi, D.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Fan, Y. H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Fang, J.

Furue, H.

Y. Tanabe, H. Furue, and J. Hatano, “Optically isotopic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1-3), 41–44 (2005).
[Crossref]

Ge, Z.

Gondek, E.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Hatano, J.

Y. Tanabe, H. Furue, and J. Hatano, “Optically isotopic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1-3), 41–44 (2005).
[Crossref]

Hsu, H. K.

Y. H. Lin, H. S. Chen, C. H. Wu, and H. K. Hsu, “Measuring electric-field-induced birefringence in polymer stabilized blue-phase liquid crystals based on phase shift measurements,” J. Appl. Phys. 109(10), 104503 (2011).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Javidi, B.

Kityk, I. V.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Kitzerow, H. S.

H. S. Kitzerow, “Blue phase come of age: a review,” Proc. SPIE 7232, 723205 (2009).

Klosowicz, S. J.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, H. C.

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[PubMed]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[Crossref]

Lin, Y. H.

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[PubMed]

H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[PubMed]

Y. S. Tsou, Y. H. Lin, and A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
[Crossref]

Y. H. Lin and Y. S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 110(11), 114516 (2011).
[Crossref]

Y. H. Lin, H. S. Chen, C. H. Wu, and H. K. Hsu, “Measuring electric-field-induced birefringence in polymer stabilized blue-phase liquid crystals based on phase shift measurements,” J. Appl. Phys. 109(10), 104503 (2011).
[Crossref]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[Crossref]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Y. H. Lin, H. Ren, and S. T. Wu, “Polarisation-independent liquid crystal devices,” Liq. Cryst. Today 17(1-2), 2–8 (2008).
[Crossref]

H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

Majchrowski, A.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Natarajan, L. V.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals(H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume Holographic Image Storage and Electro-optical Readout in a Polymer-Dispersed Liquid-Crystal Film,” Opt. Lett. 20(11), 1325–1327 (1995).
[Crossref] [PubMed]

Niziol, J.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Pezzi, L.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Qi, J.

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[Crossref]

Rakus, P.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Ren, H.

Y. H. Lin, H. Ren, and S. T. Wu, “Polarisation-independent liquid crystal devices,” Liq. Cryst. Today 17(1-2), 2–8 (2008).
[Crossref]

H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

Rolland, J.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Sato, S.

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 3, 505–507 (2006).

Shen, X.

Simoni, F.

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

Strangi, G.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Sukhov, A. V.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Sutherland, R. L.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals(H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume Holographic Image Storage and Electro-optical Readout in a Polymer-Dispersed Liquid-Crystal Film,” Opt. Lett. 20(11), 1325–1327 (1995).
[Crossref] [PubMed]

Tabiryan, N. V.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Tanabe, Y.

Y. Tanabe, H. Furue, and J. Hatano, “Optically isotopic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1-3), 41–44 (2005).
[Crossref]

Tkaczyk, S.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Tondiglia, V. P.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals(H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume Holographic Image Storage and Electro-optical Readout in a Polymer-Dispersed Liquid-Crystal Film,” Opt. Lett. 20(11), 1325–1327 (1995).
[Crossref] [PubMed]

Tsou, Y. S.

Y. S. Tsou, Y. H. Lin, and A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
[Crossref]

Y. H. Lin and Y. S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 110(11), 114516 (2011).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Umeton, C.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Vaz, N. A.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light-scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Veltri, A.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Vicari, L.

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

Wang, B.

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 3, 505–507 (2006).

Wang, Y. J.

Weglowski, R.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Wei, A. C.

Y. S. Tsou, Y. H. Lin, and A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
[Crossref]

Wojciechowski, A.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Wu, B. G.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light-scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Wu, C. H.

Y. H. Lin, H. S. Chen, C. H. Wu, and H. K. Hsu, “Measuring electric-field-induced birefringence in polymer stabilized blue-phase liquid crystals based on phase shift measurements,” J. Appl. Phys. 109(10), 104503 (2011).
[Crossref]

Wu, S. T.

Y. H. Lin, H. Ren, and S. T. Wu, “Polarisation-independent liquid crystal devices,” Liq. Cryst. Today 17(1-2), 2–8 (2008).
[Crossref]

H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

Wu, Y. H.

Xiao, X.

Ye, M.

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 3, 505–507 (2006).

Zhao, Y.

Zumer, S.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light-scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals(H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Appl. Phys. Lett. (5)

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light-scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Displays (1)

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y. S. Tsou, Y. H. Lin, and A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photon. Technol. Lett. 3, 505–507 (2006).

J. Appl. Phys. (2)

Y. H. Lin and Y. S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 110(11), 114516 (2011).
[Crossref]

Y. H. Lin, H. S. Chen, C. H. Wu, and H. K. Hsu, “Measuring electric-field-induced birefringence in polymer stabilized blue-phase liquid crystals based on phase shift measurements,” J. Appl. Phys. 109(10), 104503 (2011).
[Crossref]

J. Disp. Technol. (1)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

J. Opt. a-Pure. Appl. Opt. (1)

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. a-Pure. Appl. Opt. 11, 024017 (2009).

Jpn. J. Appl. Phys. (1)

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[Crossref]

Liq. Cryst. Today (1)

Y. H. Lin, H. Ren, and S. T. Wu, “Polarisation-independent liquid crystal devices,” Liq. Cryst. Today 17(1-2), 2–8 (2008).
[Crossref]

Mater. Sci. Eng. B (1)

Y. Tanabe, H. Furue, and J. Hatano, “Optically isotopic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1-3), 41–44 (2005).
[Crossref]

Opt. Commun. (1)

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(1), 432–438 (1993).
[Crossref] [PubMed]

Proc. SPIE (1)

H. S. Kitzerow, “Blue phase come of age: a review,” Proc. SPIE 7232, 723205 (2009).

Other (4)

S. T. Wu and D. K. Yang, Reflective liquid crystal displays (Wiley, 2001).

B. Furht, Handbook of augmented reality (Springer, 2011).

H. Ren and S. T. Wu, Introduction to adaptive lenses (Wiley, 2012).

D. K. Yang and S. T. Wu, Fundamentals of liquid crystal devices (John Wiley, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagrams of OILC at (a) voltage-off state and (b) voltage–on state. (c) The structure of OILC microlens arrays. White dotted lines stand for the electric fields.
Fig. 2
Fig. 2 (a) SEM image of OILC sample. The droplet size is ~0.25 micron. (b) Voltage-dependent transmittance of the OILC sample whose configuration is depicted in Fig. 1(a).
Fig. 3
Fig. 3 Interference fringes of OILC sample at (a) V = 0 and V = 90 Vrms. (b) Visibility (red dots) and measured phase shift (blue diamonds) of the OILC at different voltages. The cell gap was 20 μm.
Fig. 4
Fig. 4 The focal length of the OILC microlens arrays as a function of an applied voltages under an unpolarized light. (λ = 0.633nm)
Fig. 5
Fig. 5 Measured CCD images of 2D microlens arrays at (a) 0 Vrms and (b) 90 Vrms.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E i = A x x ^ + A y y ^ ,
E out (V=0)= E i e ikdF(2 n o + n e )/3 ,
E out (V V th )= E i e ik n ave (v)dF .
f= π r 2 λΔδ ,

Metrics