Abstract

A tunable channel-drop filter as essential component for the wavelength-division-multiplexing optical communication system has been demonstrated, which is based on polymer waveguide Bragg reflectors. For an ordinary Bragg reflector, the filtered signal is reflected toward the input waveguide. Thus an external circulator is required to separate the filtered signal from the input port, though it increases the total footprint and cost. For this purpose, we employed dual Bragg reflectors and a mode sorting asymmetric X-junction. The Bragg reflector exhibited a maximum reflectivity of 94% for a 6-mm long grating, a 3-dB bandwidth of 0.39 nm and a 20-dB bandwidth of 2.6 nm. The mode sorting crosstalk in asymmetric X-junction was less than −20 dB, and linear wavelength tuning was achieved over 10 nm at the applied thermal power of 377 mW.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polymer waveguide WDM channel selector operating over the entire C and L bands

Tae-Hyun Park, Sung-Moon Kim, Su-Hyun Park, Jun-Kyu Seo, Hak-Gyu Lee, and Min-Cheol Oh
Opt. Express 26(13) 16323-16332 (2018)

Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector

Kyung-Jo Kim, Jun-Kyu Seo, and Min-Cheol Oh
Opt. Express 16(3) 1423-1430 (2008)

Fabrication of optical filters based on polymer asymmetric Bragg couplers

Wei-Ching Chuang, An-Chen Lee, Ching-Kong Chao, and Chi-Ting Ho
Opt. Express 17(20) 18003-18013 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: application and technologies,” IEEE Commun. Mag. 27(10), 53–63 (1989).
    [Crossref]
  2. D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
    [Crossref]
  3. L. Domash, M. Wu, N. Nemchuk, and E. Ma, “Tunable and switchable multiple-cavity thin film filters,” J. Lightwave Technol. 22(1), 126–135 (2004).
    [Crossref]
  4. M. Lequime, R. Parmentier, F. Lemarchand, and C. Amra, “Toward tunable thin-film filters for wavelength division multiplexing applications,” Appl. Opt. 41(16), 3277–3284 (2002).
    [Crossref] [PubMed]
  5. R. Parmentier and M. Lequime, “Substrate-strain-induced tunability of dense wavelength-division multiplexing thin-film filters,” Opt. Lett. 28(9), 728–730 (2003).
    [Crossref] [PubMed]
  6. B. Yu, G. Pickrell, and A. Wang, “Thermally tunable extrinsic Fabry-Perot filter,” IEEE Photon. Technol. Lett. 16(10), 2296–2298 (2004).
    [Crossref]
  7. J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
    [Crossref]
  8. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  9. A. Iocco, H. G. Limberger, R. P. Salathé, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17(7), 1217–1221 (1999).
    [Crossref]
  10. M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
    [Crossref]
  11. Z. Zhang, D. de Felipe, W. Brinker, M. Kleinert, A. Maese-Novo, M. Moehrle, C. Zawadzki, and N. Keil, “C/L-band colorless ONU based on polymer bi-directional optical subassembly,” J. Lightwave Technol. 33(6), 1230–1234 (2015).
    [Crossref]
  12. L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
    [Crossref]
  13. L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett. 18(6), 740–742 (2006).
    [Crossref]
  14. D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26(14), 1391–1394 (2014).
    [Crossref]
  15. Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
    [Crossref]
  16. Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
    [Crossref] [PubMed]
  17. J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuit OADM with high isolation and no polarization dependence,” IEEE Photon. Technol. Lett. 11(3), 346–348 (1999).
    [Crossref]
  18. M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, and S. G. Han, “Asymmetric X-junction thermooptic switchs based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10(6), 813–815 (1998).
    [Crossref]
  19. J.-S. Shin, C.-H. Lee, S.-Y. Shin, G.-H. Huang, W.-S. Chu, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Arrayed waveguide collimators for integrating free-space optics on polymeric waveguide devices,” Opt. Express 22(20), 23801–23806 (2014).
    [PubMed]
  20. K.-J. Kim and M.-C. Oh, “Flexible Bragg reflection waveguide devices fabricated by post-lift-off process,” IEEE Photon. Technol. Lett. 20(4), 288–290 (2008).
    [Crossref]

2015 (1)

2014 (2)

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26(14), 1391–1394 (2014).
[Crossref]

J.-S. Shin, C.-H. Lee, S.-Y. Shin, G.-H. Huang, W.-S. Chu, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Arrayed waveguide collimators for integrating free-space optics on polymeric waveguide devices,” Opt. Express 22(20), 23801–23806 (2014).
[PubMed]

2009 (1)

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

2008 (2)

Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
[Crossref] [PubMed]

K.-J. Kim and M.-C. Oh, “Flexible Bragg reflection waveguide devices fabricated by post-lift-off process,” IEEE Photon. Technol. Lett. 20(4), 288–290 (2008).
[Crossref]

2006 (1)

L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett. 18(6), 740–742 (2006).
[Crossref]

2004 (2)

B. Yu, G. Pickrell, and A. Wang, “Thermally tunable extrinsic Fabry-Perot filter,” IEEE Photon. Technol. Lett. 16(10), 2296–2298 (2004).
[Crossref]

L. Domash, M. Wu, N. Nemchuk, and E. Ma, “Tunable and switchable multiple-cavity thin film filters,” J. Lightwave Technol. 22(1), 126–135 (2004).
[Crossref]

2003 (1)

2002 (2)

M. Lequime, R. Parmentier, F. Lemarchand, and C. Amra, “Toward tunable thin-film filters for wavelength division multiplexing applications,” Appl. Opt. 41(16), 3277–3284 (2002).
[Crossref] [PubMed]

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

1999 (2)

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuit OADM with high isolation and no polarization dependence,” IEEE Photon. Technol. Lett. 11(3), 346–348 (1999).
[Crossref]

A. Iocco, H. G. Limberger, R. P. Salathé, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17(7), 1217–1221 (1999).
[Crossref]

1998 (4)

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[Crossref]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, and S. G. Han, “Asymmetric X-junction thermooptic switchs based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10(6), 813–815 (1998).
[Crossref]

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

1989 (1)

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: application and technologies,” IEEE Commun. Mag. 27(10), 53–63 (1989).
[Crossref]

Abe, M.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuit OADM with high isolation and no polarization dependence,” IEEE Photon. Technol. Lett. 11(3), 346–348 (1999).
[Crossref]

Ahn, J.-H.

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, and S. G. Han, “Asymmetric X-junction thermooptic switchs based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10(6), 813–815 (1998).
[Crossref]

Akulova, Y. A.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Albert, J.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuit OADM with high isolation and no polarization dependence,” IEEE Photon. Technol. Lett. 11(3), 346–348 (1999).
[Crossref]

Amra, C.

Askins, G. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Bennion, I.

Bilodeau, F.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuit OADM with high isolation and no polarization dependence,” IEEE Photon. Technol. Lett. 11(3), 346–348 (1999).
[Crossref]

Blomquist, R.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[Crossref]

Boimovich, E.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

Brinker, W.

Z. Zhang, D. de Felipe, W. Brinker, M. Kleinert, A. Maese-Novo, M. Moehrle, C. Zawadzki, and N. Keil, “C/L-band colorless ONU based on polymer bi-directional optical subassembly,” J. Lightwave Technol. 33(6), 1230–1234 (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26(14), 1391–1394 (2014).
[Crossref]

Cheung, K.-W.

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: application and technologies,” IEEE Commun. Mag. 27(10), 53–63 (1989).
[Crossref]

Chisholm, K. E.

Chu, W.-S.

Coldren, C. W.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Coldren, L. A.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Dahl, A. P.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

de Felipe, D.

Z. Zhang, D. de Felipe, W. Brinker, M. Kleinert, A. Maese-Novo, M. Moehrle, C. Zawadzki, and N. Keil, “C/L-band colorless ONU based on polymer bi-directional optical subassembly,” J. Lightwave Technol. 33(6), 1230–1234 (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26(14), 1391–1394 (2014).
[Crossref]

Dell, J. M.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Domash, L.

Eldada, L.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[Crossref]

Everall, L. A.

Faraone, L.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Fish, G. A.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Glass, C.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[Crossref]

Han, S. G.

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, and S. G. Han, “Asymmetric X-junction thermooptic switchs based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10(6), 813–815 (1998).
[Crossref]

Hattori, K.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuit OADM with high isolation and no polarization dependence,” IEEE Photon. Technol. Lett. 11(3), 346–348 (1999).
[Crossref]

Hegblom, E.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Hibino, Y.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuit OADM with high isolation and no polarization dependence,” IEEE Photon. Technol. Lett. 11(3), 346–348 (1999).
[Crossref]

Hill, K. O.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuit OADM with high isolation and no polarization dependence,” IEEE Photon. Technol. Lett. 11(3), 346–348 (1999).
[Crossref]

Huang, G.-H.

Huang, Y.

L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett. 18(6), 740–742 (2006).
[Crossref]

Iocco, A.

Johnson, D. C.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuit OADM with high isolation and no polarization dependence,” IEEE Photon. Technol. Lett. 11(3), 346–348 (1999).
[Crossref]

Ju, J. J.

Keating, A. J.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Keil, N.

Z. Zhang, D. de Felipe, W. Brinker, M. Kleinert, A. Maese-Novo, M. Moehrle, C. Zawadzki, and N. Keil, “C/L-band colorless ONU based on polymer bi-directional optical subassembly,” J. Lightwave Technol. 33(6), 1230–1234 (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26(14), 1391–1394 (2014).
[Crossref]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kim, H.-G.

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

Kim, K.-J.

K.-J. Kim and M.-C. Oh, “Flexible Bragg reflection waveguide devices fabricated by post-lift-off process,” IEEE Photon. Technol. Lett. 20(4), 288–290 (2008).
[Crossref]

Kim, M.-S.

Kitagawa, T.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuit OADM with high isolation and no polarization dependence,” IEEE Photon. Technol. Lett. 11(3), 346–348 (1999).
[Crossref]

Kleinert, M.

Z. Zhang, D. de Felipe, W. Brinker, M. Kleinert, A. Maese-Novo, M. Moehrle, C. Zawadzki, and N. Keil, “C/L-band colorless ONU based on polymer bi-directional optical subassembly,” J. Lightwave Technol. 33(6), 1230–1234 (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26(14), 1391–1394 (2014).
[Crossref]

Kobrinski, H.

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: application and technologies,” IEEE Commun. Mag. 27(10), 53–63 (1989).
[Crossref]

Koh, P.-C.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kozodoy, P.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Larson, M. C.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lee, C.-H.

Lee, H.-J.

J.-S. Shin, C.-H. Lee, S.-Y. Shin, G.-H. Huang, W.-S. Chu, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Arrayed waveguide collimators for integrating free-space optics on polymeric waveguide devices,” Opt. Express 22(20), 23801–23806 (2014).
[PubMed]

Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
[Crossref] [PubMed]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, and S. G. Han, “Asymmetric X-junction thermooptic switchs based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10(6), 813–815 (1998).
[Crossref]

Lee, M.-H.

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, and S. G. Han, “Asymmetric X-junction thermooptic switchs based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10(6), 813–815 (1998).
[Crossref]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

Lemarchand, F.

Lequime, M.

Limberger, H. G.

Ma, E.

Mack, M. P.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Maese-Novo, A.

Milne, J. S.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Moehrle, M.

Z. Zhang, D. de Felipe, W. Brinker, M. Kleinert, A. Maese-Novo, M. Moehrle, C. Zawadzki, and N. Keil, “C/L-band colorless ONU based on polymer bi-directional optical subassembly,” J. Lightwave Technol. 33(6), 1230–1234 (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26(14), 1391–1394 (2014).
[Crossref]

Nakagawa, S.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Nemchuk, N.

Noh, Y.-O.

Norwood, R. A.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[Crossref]

Novo, A. M.

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26(14), 1391–1394 (2014).
[Crossref]

Oh, M.-C.

J.-S. Shin, C.-H. Lee, S.-Y. Shin, G.-H. Huang, W.-S. Chu, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Arrayed waveguide collimators for integrating free-space optics on polymeric waveguide devices,” Opt. Express 22(20), 23801–23806 (2014).
[PubMed]

Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
[Crossref] [PubMed]

K.-J. Kim and M.-C. Oh, “Flexible Bragg reflection waveguide devices fabricated by post-lift-off process,” IEEE Photon. Technol. Lett. 20(4), 288–290 (2008).
[Crossref]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, and S. G. Han, “Asymmetric X-junction thermooptic switchs based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10(6), 813–815 (1998).
[Crossref]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

Oh, S. H.

Parmentier, R.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Penniman, S. K.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Pickrell, G.

B. Yu, G. Pickrell, and A. Wang, “Thermally tunable extrinsic Fabry-Perot filter,” IEEE Photon. Technol. Lett. 16(10), 2296–2298 (2004).
[Crossref]

Poga, C.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[Crossref]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Sadot, D.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

Salathé, R. P.

Schow, C. L.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Shin, J.-S.

Shin, S.-Y.

Strand, T. A.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Wang, A.

B. Yu, G. Pickrell, and A. Wang, “Thermally tunable extrinsic Fabry-Perot filter,” IEEE Photon. Technol. Lett. 16(10), 2296–2298 (2004).
[Crossref]

Williams, J. A. R.

Wipiejewski, T.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

Wu, M.

Yariv, A.

L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett. 18(6), 740–742 (2006).
[Crossref]

Yin, S.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[Crossref]

Yu, B.

B. Yu, G. Pickrell, and A. Wang, “Thermally tunable extrinsic Fabry-Perot filter,” IEEE Photon. Technol. Lett. 16(10), 2296–2298 (2004).
[Crossref]

Zawadzki, C.

Z. Zhang, D. de Felipe, W. Brinker, M. Kleinert, A. Maese-Novo, M. Moehrle, C. Zawadzki, and N. Keil, “C/L-band colorless ONU based on polymer bi-directional optical subassembly,” J. Lightwave Technol. 33(6), 1230–1234 (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26(14), 1391–1394 (2014).
[Crossref]

Zhang, Z.

Z. Zhang, D. de Felipe, W. Brinker, M. Kleinert, A. Maese-Novo, M. Moehrle, C. Zawadzki, and N. Keil, “C/L-band colorless ONU based on polymer bi-directional optical subassembly,” J. Lightwave Technol. 33(6), 1230–1234 (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26(14), 1391–1394 (2014).
[Crossref]

Zhu, L.

L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett. 18(6), 740–742 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

IEEE Commun. Mag. (2)

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: application and technologies,” IEEE Commun. Mag. 27(10), 53–63 (1989).
[Crossref]

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (7)

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuit OADM with high isolation and no polarization dependence,” IEEE Photon. Technol. Lett. 11(3), 346–348 (1999).
[Crossref]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, and S. G. Han, “Asymmetric X-junction thermooptic switchs based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10(6), 813–815 (1998).
[Crossref]

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[Crossref]

L. Zhu, Y. Huang, and A. Yariv, “Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides,” IEEE Photon. Technol. Lett. 18(6), 740–742 (2006).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26(14), 1391–1394 (2014).
[Crossref]

B. Yu, G. Pickrell, and A. Wang, “Thermally tunable extrinsic Fabry-Perot filter,” IEEE Photon. Technol. Lett. 16(10), 2296–2298 (2004).
[Crossref]

K.-J. Kim and M.-C. Oh, “Flexible Bragg reflection waveguide devices fabricated by post-lift-off process,” IEEE Photon. Technol. Lett. 20(4), 288–290 (2008).
[Crossref]

J. Lightwave Technol. (4)

J. Microelectromech. Syst. (1)

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of channel-drop filters consisting of dual Bragg reflectors and a mode sorting asymmetric X-junction.
Fig. 2
Fig. 2 BPM simulation results of the mode sorting phenomenon on the asymmetric X-junction; (a) mode evolution for even and odd mode excited at the junction waist, respectively, (b) the crosstalk calculated as a function of junction angle for the even mode excitation, and (c) mode sorting by the two Bragg reflected modes with in-phase and out-of phase, respectively.
Fig. 3
Fig. 3 Schematic fabrication procedures of polymer waveguide channel-drop filters.
Fig. 4
Fig. 4 SEM photographs of the fabricated device: (a) the asymmetric X-junction and (b) the Bragg grating. The two dotted-circles in (a) indicate the parts of asymmetric X-junction magnified in the insets.
Fig. 5
Fig. 5 Experimental characterization of the mode sorting device using a Mach-Zehnder device consisting of two cascaded X-junction device, as depicted in the inset of (a): for the applied signal on the phase modulator shown in (a), the optical output signal, shown in (b), exhibited large extinction ratio by efficient mode sorting with a low crosstalk as −20 dB.
Fig. 6
Fig. 6 Measurement results of channel-drop filters: (a) Transmission and reflection spectra of the Bragg reflector, (b) reflection spectra tuned by applying thermal power, and (c) peak wavelength shift as a function of the applied thermal power.

Metrics