Abstract

We measured, within 6% accuracy, the nonlinear refractive index (n2) of 10 meter long multimode silica fiber of 17μm core diameter, using a modified induced grating autocorrelation technique (IGA). This measurement technique, based on time-delayed two beam coupling in a photorefractive crystal has been used to accurately measure n2 in short lengths of single mode fibers. For the first time to our knowledge, IGA is used to measure n2 of multimode fiber with a passively modelocked Nd:YVO4 laser operating with a dual-line near 1342 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous measurement of the Raman gain coefficient and the nonlinear refractive index of optical fibers: theory and experiment

Ferdinand A. Oguama, Hernando Garcia, and Anthony M. Johnson
J. Opt. Soc. Am. B 22(2) 426-436 (2005)

Measurement of the effective nonlinear and dispersion coefficients in optical fibers by the induced grating autocorrelation technique

Robinson Kuis, Anthony Johnson, and Sudhir Trivedi
Opt. Express 19(3) 1755-1766 (2011)

New approach to the measurement of the nonlinear refractive index of short (< 25 m) lengths of silica and erbium-doped fibers

Hernando Garcia, Anthony M. Johnson, Ferdinand A. Oguama, and Sudhir Trivedi
Opt. Lett. 28(19) 1796-1798 (2003)

References

  • View by:
  • |
  • |
  • |

  1. R. Rokitski and S. Fainman, “Propagation of ultrashort pulses in multimode fiber in space and time,” Opt. Express 11(13), 1497–1502 (2003).
    [Crossref] [PubMed]
  2. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25(10), 1645–1654 (2008).
    [Crossref]
  3. Q. Z. Wang, D. Ji, L. Yang, P. P. Ho, and R. R. Alfano, “Self-phase modulation in multimode optical fibers produced by moderately high-powered picosecond pulses,” Opt. Lett. 14(11), 578–580 (1989).
    [Crossref] [PubMed]
  4. A. M. Levine, E. Ozizmir, R. Trebino, C. C. Hayden, A. M. Johnson, and K. L. Tokuda, “Induced-grating autocorrelation of ultrashort pulses in a slowly responding medium,” J. Opt. Soc. Am. B 11(9), 1609–1618 (1994).
    [Crossref]
  5. H. Garcia, A. M. Johnson, F. A. Oguama, and S. Trivedi, “New approach to the measurement of the nonlinear refractive index of short (<25 m) lengths of silica and erbium-doped fibers,” Opt. Lett. 28(19), 1796–1798 (2003).
    [Crossref] [PubMed]
  6. F. A. Oguama, H. Garcia, and A. M. Johnson, “Simultaneous measurement of the Raman gain coefficient and the nonlinear refractive index of optical fibers: theory and experiment,” J. Opt. Soc. Am. B 22(2), 426–436 (2005).
    [Crossref]
  7. F. A. Oguama, A. M. Johnson, and W. A. Reed, “Measurement of the nonlinear coefficient of telecommunication fibers as a function of Er, Al and Ge doping profiles by using the photorefractive beam coupling technique,” J. Opt. Soc. Am. B 22(8), 1600–1604 (2005).
    [Crossref]
  8. H. Garcia, A. M. Johnson, F. A. Oguama, and S. Trivedi, “Pump-induced nonlinear refractive-index change in erbium- and ytterbium-doped fibers: theory and experiment,” Opt. Lett. 30(11), 1261–1263 (2005).
    [Crossref] [PubMed]
  9. F. A. Oguama, A. Tchouassi, A. M. Johnson, and H. Garcia, “Numerical modeling of the induced grating autocorrelation for studying optical fiber nonlinearities in the picoseconds regime,” Appl. Phys. Lett. 86(9), 091101 (2005).
    [Crossref]
  10. R. Kuis, A. Johnson, and S. Trivedi, “Measurement of the effective nonlinear and dispersion coefficients in optical fibers by the induced grating autocorrelation technique,” Opt. Express 19(3), 1755–1766 (2011).
    [Crossref] [PubMed]
  11. R. R. Alfano, The Supercontinuum Laser source (Springer-Verlag, 1989), New York.
  12. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984).
    [Crossref]
  13. J. Peatross and A. Rundquist, “Temporal decorrelation of short laser pulses,” J. Opt. Soc. Am. B 15(1), 216–222 (1998).
    [Crossref]
  14. R. Trebino and D. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993).
    [Crossref]
  15. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971).
    [Crossref] [PubMed]
  16. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, 1998).
  17. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000).
  18. S. F. Feldman, P. R. Staver, and W. T. Lotshaw, “Observation of spectral broadening caused by self-phase modulation in highly multimode optical fiber,” Appl. Opt. 36(3), 617–621 (1997).
    [Crossref] [PubMed]

2011 (1)

2008 (1)

2005 (4)

2003 (2)

1998 (1)

1997 (1)

1994 (1)

1993 (1)

1989 (1)

1984 (1)

1971 (1)

Alfano, R. R.

Fainman, S.

Feldman, S. F.

Garcia, H.

Gloge, D.

Hayden, C. C.

Ho, P. P.

Horak, P.

Ji, D.

Johnson, A.

Johnson, A. M.

Kane, D.

Kuis, R.

Levine, A. M.

Lotshaw, W. T.

Oguama, F. A.

Ozizmir, E.

Peatross, J.

Poletti, F.

Reed, W. A.

Rokitski, R.

Rundquist, A.

Shank, C. V.

Staver, P. R.

Stolen, R. H.

Tchouassi, A.

F. A. Oguama, A. Tchouassi, A. M. Johnson, and H. Garcia, “Numerical modeling of the induced grating autocorrelation for studying optical fiber nonlinearities in the picoseconds regime,” Appl. Phys. Lett. 86(9), 091101 (2005).
[Crossref]

Tokuda, K. L.

Tomlinson, W. J.

Trebino, R.

Trivedi, S.

Wang, Q. Z.

Yang, L.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

F. A. Oguama, A. Tchouassi, A. M. Johnson, and H. Garcia, “Numerical modeling of the induced grating autocorrelation for studying optical fiber nonlinearities in the picoseconds regime,” Appl. Phys. Lett. 86(9), 091101 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (6)

Opt. Express (2)

Opt. Lett. (3)

Other (3)

R. R. Alfano, The Supercontinuum Laser source (Springer-Verlag, 1989), New York.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, 1998).

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 IGA experimental setup consisting of time-delayed two-beam coupling in CdMnTe:V photorefractive crystal.
Fig. 2
Fig. 2 Fitted IGA experimental data to early version of the theoretical IGA model.
Fig. 3
Fig. 3 Linear fitting of SPMS versus average power for 10 meter long SMF- 28 fiber.
Fig. 4
Fig. 4 OSA laser frequency response and fit to a combination of a hyperbolic secant and a Gaussian pulse temporal profile.
Fig. 5
Fig. 5 Experimental fit of IGA signal to theory for 500 mW average power in 10 meters of Corning single mode silica fiber SMF-28.
Fig. 6
Fig. 6 Experimental fit of IGA signal to theory for 500 mW average power in 10 meters of single mode silica fiber SMF-28.
Fig. 7
Fig. 7 Beam profile of single mode fiber SMF-28 9.5 µm core diameter, 1m long.
Fig. 8
Fig. 8 Beam profile of multimode fiber FUD-3539 17.0 μm core diameter, 1m long.
Fig. 9
Fig. 9 Experimental fit of IGA signal to theory for 250 mW average power in 10 meters of Nufern multimode silica fiber FUD-3539.
Fig. 10
Fig. 10 SPMS versus average power plot and the slope of the linear fitting for 10 meters of Nufern multimode mode silica fiber FUD-3539.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E( r,z,φ,t )= j F j ( r,φ ) A j ( z,t )exp( i β 0j )
r 2 2 F/ r 2 +rF/ r+( U 2 r 2 / a 2 l 2 )F=0for0<r<a ( core )
r 2 2 F/ r 2 +rF/ r+( W 2 r 2 / a 2 l 2 )F=0forr>a ( cladding )
U=a ( k 0 2 n 1 2 β 2 ) 1/2 and W=a ( β 2 k 0 2 n 2 2 ) 1/2
F( r,φ )= A J l ( U ) J l ( Ur a )[ cos( lφ ) sin( lφ ) ]0<r<a(core)
F( r,φ )= A K l ( W ) K l ( Wr a )[ cos( lφ ) sin( lφ ) ]r>a(cladding)
A p ( z,t ) / z =i( β 0 ( p ) β 0 ) A p ( z,t )( β 1 ( p ) β 1 ) A p ( z,t ) / t i n2 β n ( p ) n! ( i/ t ) n A p ( z,t ) +( i n 2 ω 0 /c )( 1+i τ 0 / t ) l,m,n { Q plmn ( ω 0 )[ 2( 1 f R ) A l ( z,t ) A m ( z,t ) A n ( z,t ) +3 f R A l ( z,t ) dτh( τ ) A m ( z,tτ ) A n ( z,tτ ) ] }
SPMS= j | A j | 2 (spms) j / j | A j | 2
W det | K( τ ) | 2 = | + E( r,z,φ,t ) E ( r,z,φ,t+τ )dt | 2
n 2 / A eff =( n τ p cλ / t R L ) [ 32 π 2 ln2 /π 10 7 ] 1 ( SPMS / P avg )
E( t )= E 0 exp( 2ln2 ( t/ τ p ) 2 i( ω 0 t+ϕ ) )
E( t )= E 1 ( t )+ E 2 ( t )= E 01 sech( 2ln( 1+ 2 )t/ τ p )exp( i ω 01 t )+ E 02 exp( 2ln2× ( t/ τ p ) 2 i ω 02 t )
L P 01 F 1 = e r 2 a 2 [ 1 1 ]andL P 11 F 2 = J 1 ( Ur a )[ cos( φ ) sin( φ ) ]
A 1 / z + β 1 ( 1 ) A 1 / t +0.5j β 2 ( 1 ) 2 A 1 / 2 t +0.5α A 1 =[ ( f 11 spm s 1 | A 1 | 2 +2 f 12 spms | A 2 | 2 2 ) A 1 ]
A 2 / z + β 2 ( 2 ) A 1 / t +0.5j β 2 ( 2 ) 2 A 2 / 2 t +0.5α A 2 =[ ( f 22 spm s 2 | A 2 | 2 +2 f 21 spms | A 1 | 1 2 ) A 2 ]

Metrics