Abstract

Whispering gallery modes (WGMs) within microsphere cavities enable highly sensitive label-free detection of changes in the surrounding refractive index. This detection modality is of particular interest for biosensing applications. However, the majority of biosensing work utilizing WGMs to date has been conducted with resonators made from either silica or polystyrene, while other materials remain largely uninvestigated. By considering characteristics such as the quality factor and sensitivity of the resonator, the optimal WGM sensor design can be identified for various applications. This work explores the choice of resonator refractive index and size to provide design guidelines for undertaking refractive index biosensing using WGMs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimizing detection limits in whispering gallery mode biosensing

Matthew R. Foreman, Wei-Liang Jin, and Frank Vollmer
Opt. Express 22(5) 5491-5511 (2014)

Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

Effect of surrounding inhomogeneities on whispering gallery modes in spherical resonators

Sina Amini, Yu You, George W. Kattawar, and Kenith E. Meissner
Appl. Opt. 52(4) 690-697 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  2. P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
    [Crossref]
  3. A. François, T. Reynolds, and T. M. Monro, “A fiber-tip label-free biological sensing platform: a practical approach toward in-vivo sensing,” Sensors (Basel) 15(1), 1168–1181 (2015).
    [Crossref] [PubMed]
  4. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
    [Crossref] [PubMed]
  5. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
    [Crossref] [PubMed]
  6. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref] [PubMed]
  7. M. I. Cheema, S. Mehrabani, A. A. Hayat, Y. A. Peter, A. M. Armani, and A. G. Kirk, “Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy,” Opt. Express 20(8), 9090–9098 (2012).
    [Crossref] [PubMed]
  8. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998).
    [Crossref] [PubMed]
  9. J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse, and D. Haertle, “Fabrication and characterization of whispering-gallery-mode resonators made of polymers,” Opt. Express 17(4), 2573–2578 (2009).
    [Crossref] [PubMed]
  10. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
    [Crossref]
  11. Y. Ruan, K. Boyd, H. Ji, A. François, H. Ebendorff-Heidepriem, J. Munch, and T. M. Monro, “Tellurite microspheres for nanoparticle sensing and novel light sources,” Opt. Express 22(10), 11995–12006 (2014).
    [Crossref] [PubMed]
  12. R. S. Moirangthem and A. Erbe, “Interfacial refractive index sensing using visible-excited intrinsic zinc oxide photoluminescence coupled to whispering gallery modes,” Appl. Phys. Lett. 103(5), 051108 (2013).
    [Crossref]
  13. A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9(4), 241–244 (2015).
    [Crossref]
  14. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
    [Crossref]
  15. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005).
    [Crossref] [PubMed]
  16. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering gallery modes,” J. Opt. Soc. Am. B 16(1), 147–154 (1999).
    [Crossref]
  17. Z. Ballard, M. D. Baaske, and F. Vollmer, “Stand-off biodetection with free-space coupled asymmetric microsphere cavities,” Sensors (Basel) 15(4), 8968–8980 (2015).
    [Crossref] [PubMed]
  18. M. R. Foreman, W. L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22(5), 5491–5511 (2014).
    [Crossref] [PubMed]
  19. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17(6), 1051–1057 (2000).
    [Crossref]
  20. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  21. Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
    [Crossref]
  22. M. Himmelhaus and A. François, “In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor,” Biosens. Bioelectron. 25(2), 418–427 (2009).
    [Crossref] [PubMed]
  23. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  24. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
    [Crossref]
  25. M. I. Cheema, C. Shi, A. M. Armani, and A. G. Kirk, “Optimizing the signal to noise ratio of microcavity sensors,” IEEE Photon. Technol. Lett. 26(20), 2023–2026 (2014).
    [Crossref]
  26. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87(2), 1355–1360 (1987).
    [Crossref]
  27. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38(7), 3410–3416 (1988).
    [Crossref] [PubMed]
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering by a Sphere (Wiley-VCH Verlag GmbH, 2007).
  29. R. Lessard, O. Rousseau-Cyr, M. Charlebois, C. Riviere, O. Mermut, and C. N. Allen, “Flow cytometer system for single-shot biosensing based on whispering gallery modes in fluorescent microspheres,” Proc. SPIE 8600, 86001 (2013).
  30. J. M. M. Hall, V. Shahraam Afshar, M. R. Henderson, A. François, T. Reynolds, N. Riesen, and T. M. Monro, “Method for predicting whispering gallery mode spectra of spherical microresonators,” Opt. Express 23(8), 9924–9937 (2015).
    [Crossref] [PubMed]
  31. V. S. Ilchenko, A. M. Bennett, P. Santini, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering gallery mode diamond resonator,” Opt. Lett. 38(21), 4320–4323 (2013).
    [Crossref] [PubMed]
  32. A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
    [Crossref]
  33. M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors (Basel) 10(6), 6257–6274 (2010).
    [Crossref] [PubMed]
  34. J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
    [Crossref]
  35. J. Zhang, L. Xue, and Y. Han, “Fabrication gradient surfaces by changing polystyrene microsphere topography,” Langmuir 21(1), 5–8 (2005).
    [Crossref] [PubMed]
  36. G. E. Yakubov, O. I. Vinogradova, and H. J. Butt, “A study of the linear tension effect on the polystyrene microsphere wettability with water,” Colloid J. 63(4), 518–525 (2001).
    [Crossref]
  37. L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15(10), 2439–2444 (2006).
    [Crossref]
  38. S. N. Kasarova, N. G. Sultanova, and I. D. Nikolov, “Temperature dependence of refractive characteristics of optical plastics,” J. Phys. Conf. Ser. 253, 012028 (2010).
    [Crossref]
  39. R. Bischler, M. Olszyna, M. Himmelhaus, and L. Dähne, “Development of a fully automated in-vivo diagnostic system based on low-Q whispering gallery modes in fluorescent microparticles,” Eur. Phys. J. Spec. Top. 223(10), 2041–2055 (2014).
    [Crossref]
  40. J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse, and D. Haertle, “Fabrication and characterization of whispering-gallery-mode resonators made of polymers,” Opt. Express 17(4), 2573–2578 (2009).
    [Crossref] [PubMed]
  41. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electronically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
    [Crossref]
  42. K. Sasagawa, Z.- Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm 3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325 (2004).
    [Crossref]
  43. A. François, K. J. Rowland, S. V. Afshar, M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery mode microresonators,” Opt. Express 21(19), 22566–22577 (2013).
    [Crossref] [PubMed]

2015 (5)

A. François, T. Reynolds, and T. M. Monro, “A fiber-tip label-free biological sensing platform: a practical approach toward in-vivo sensing,” Sensors (Basel) 15(1), 1168–1181 (2015).
[Crossref] [PubMed]

A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9(4), 241–244 (2015).
[Crossref]

Z. Ballard, M. D. Baaske, and F. Vollmer, “Stand-off biodetection with free-space coupled asymmetric microsphere cavities,” Sensors (Basel) 15(4), 8968–8980 (2015).
[Crossref] [PubMed]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

J. M. M. Hall, V. Shahraam Afshar, M. R. Henderson, A. François, T. Reynolds, N. Riesen, and T. M. Monro, “Method for predicting whispering gallery mode spectra of spherical microresonators,” Opt. Express 23(8), 9924–9937 (2015).
[Crossref] [PubMed]

2014 (5)

M. R. Foreman, W. L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22(5), 5491–5511 (2014).
[Crossref] [PubMed]

Y. Ruan, K. Boyd, H. Ji, A. François, H. Ebendorff-Heidepriem, J. Munch, and T. M. Monro, “Tellurite microspheres for nanoparticle sensing and novel light sources,” Opt. Express 22(10), 11995–12006 (2014).
[Crossref] [PubMed]

R. Bischler, M. Olszyna, M. Himmelhaus, and L. Dähne, “Development of a fully automated in-vivo diagnostic system based on low-Q whispering gallery modes in fluorescent microparticles,” Eur. Phys. J. Spec. Top. 223(10), 2041–2055 (2014).
[Crossref]

M. I. Cheema, C. Shi, A. M. Armani, and A. G. Kirk, “Optimizing the signal to noise ratio of microcavity sensors,” IEEE Photon. Technol. Lett. 26(20), 2023–2026 (2014).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

2013 (4)

R. S. Moirangthem and A. Erbe, “Interfacial refractive index sensing using visible-excited intrinsic zinc oxide photoluminescence coupled to whispering gallery modes,” Appl. Phys. Lett. 103(5), 051108 (2013).
[Crossref]

R. Lessard, O. Rousseau-Cyr, M. Charlebois, C. Riviere, O. Mermut, and C. N. Allen, “Flow cytometer system for single-shot biosensing based on whispering gallery modes in fluorescent microspheres,” Proc. SPIE 8600, 86001 (2013).

A. François, K. J. Rowland, S. V. Afshar, M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery mode microresonators,” Opt. Express 21(19), 22566–22577 (2013).
[Crossref] [PubMed]

V. S. Ilchenko, A. M. Bennett, P. Santini, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering gallery mode diamond resonator,” Opt. Lett. 38(21), 4320–4323 (2013).
[Crossref] [PubMed]

2012 (2)

2010 (2)

S. N. Kasarova, N. G. Sultanova, and I. D. Nikolov, “Temperature dependence of refractive characteristics of optical plastics,” J. Phys. Conf. Ser. 253, 012028 (2010).
[Crossref]

M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors (Basel) 10(6), 6257–6274 (2010).
[Crossref] [PubMed]

2009 (5)

2008 (3)

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

2007 (2)

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[Crossref]

P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
[Crossref]

2006 (2)

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15(10), 2439–2444 (2006).
[Crossref]

2005 (3)

A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005).
[Crossref] [PubMed]

J. Zhang, L. Xue, and Y. Han, “Fabrication gradient surfaces by changing polystyrene microsphere topography,” Langmuir 21(1), 5–8 (2005).
[Crossref] [PubMed]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

2004 (1)

K. Sasagawa, Z.- Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm 3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325 (2004).
[Crossref]

2003 (1)

2001 (1)

G. E. Yakubov, O. I. Vinogradova, and H. J. Butt, “A study of the linear tension effect on the polystyrene microsphere wettability with water,” Colloid J. 63(4), 518–525 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (1)

1996 (1)

1988 (1)

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38(7), 3410–3416 (1988).
[Crossref] [PubMed]

1987 (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87(2), 1355–1360 (1987).
[Crossref]

Afshar, S. V.

Afshar V, S.

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Agarwal, A.

Allen, C. N.

R. Lessard, O. Rousseau-Cyr, M. Charlebois, C. Riviere, O. Mermut, and C. N. Allen, “Flow cytometer system for single-shot biosensing based on whispering gallery modes in fluorescent microspheres,” Proc. SPIE 8600, 86001 (2013).

Armani, A. M.

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

Baaske, M. D.

Z. Ballard, M. D. Baaske, and F. Vollmer, “Stand-off biodetection with free-space coupled asymmetric microsphere cavities,” Sensors (Basel) 15(4), 8968–8980 (2015).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Ballard, Z.

Z. Ballard, M. D. Baaske, and F. Vollmer, “Stand-off biodetection with free-space coupled asymmetric microsphere cavities,” Sensors (Basel) 15(4), 8968–8980 (2015).
[Crossref] [PubMed]

Beckham, R. E.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

Beckmann, T.

Bennett, A. M.

Bischler, R.

R. Bischler, M. Olszyna, M. Himmelhaus, and L. Dähne, “Development of a fully automated in-vivo diagnostic system based on low-Q whispering gallery modes in fluorescent microparticles,” Eur. Phys. J. Spec. Top. 223(10), 2041–2055 (2014).
[Crossref]

Borri, P.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[Crossref]

Boyd, K.

Buse, K.

Butt, H. J.

G. E. Yakubov, O. I. Vinogradova, and H. J. Butt, “A study of the linear tension effect on the polystyrene microsphere wettability with water,” Colloid J. 63(4), 518–525 (2001).
[Crossref]

Charlebois, M.

R. Lessard, O. Rousseau-Cyr, M. Charlebois, C. Riviere, O. Mermut, and C. N. Allen, “Flow cytometer system for single-shot biosensing based on whispering gallery modes in fluorescent microspheres,” Proc. SPIE 8600, 86001 (2013).

Cheema, M. I.

Chew, H.

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38(7), 3410–3416 (1988).
[Crossref] [PubMed]

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87(2), 1355–1360 (1987).
[Crossref]

Dähne, L.

R. Bischler, M. Olszyna, M. Himmelhaus, and L. Dähne, “Development of a fully automated in-vivo diagnostic system based on low-Q whispering gallery modes in fluorescent microparticles,” Eur. Phys. J. Spec. Top. 223(10), 2041–2055 (2014).
[Crossref]

Ebendorff-Heidepriem, H.

Erbe, A.

A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9(4), 241–244 (2015).
[Crossref]

R. S. Moirangthem and A. Erbe, “Interfacial refractive index sensing using visible-excited intrinsic zinc oxide photoluminescence coupled to whispering gallery modes,” Appl. Phys. Lett. 103(5), 051108 (2013).
[Crossref]

Fan, X.

Fan, X. D.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Foreman, M. R.

M. R. Foreman, W. L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22(5), 5491–5511 (2014).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

François, A.

A. François, T. Reynolds, and T. M. Monro, “A fiber-tip label-free biological sensing platform: a practical approach toward in-vivo sensing,” Sensors (Basel) 15(1), 1168–1181 (2015).
[Crossref] [PubMed]

J. M. M. Hall, V. Shahraam Afshar, M. R. Henderson, A. François, T. Reynolds, N. Riesen, and T. M. Monro, “Method for predicting whispering gallery mode spectra of spherical microresonators,” Opt. Express 23(8), 9924–9937 (2015).
[Crossref] [PubMed]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Y. Ruan, K. Boyd, H. Ji, A. François, H. Ebendorff-Heidepriem, J. Munch, and T. M. Monro, “Tellurite microspheres for nanoparticle sensing and novel light sources,” Opt. Express 22(10), 11995–12006 (2014).
[Crossref] [PubMed]

A. François, K. J. Rowland, S. V. Afshar, M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery mode microresonators,” Opt. Express 21(19), 22566–22577 (2013).
[Crossref] [PubMed]

M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors (Basel) 10(6), 6257–6274 (2010).
[Crossref] [PubMed]

M. Himmelhaus and A. François, “In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor,” Biosens. Bioelectron. 25(2), 418–427 (2009).
[Crossref] [PubMed]

Gorodetsky, M. L.

Guo, Z.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Haertle, D.

Hall, J. M. M.

Han, Y.

J. Zhang, L. Xue, and Y. Han, “Fabrication gradient surfaces by changing polystyrene microsphere topography,” Langmuir 21(1), 5–8 (2005).
[Crossref] [PubMed]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Hayat, A. A.

Henderson, M. R.

Himmelhaus, M.

R. Bischler, M. Olszyna, M. Himmelhaus, and L. Dähne, “Development of a fully automated in-vivo diagnostic system based on low-Q whispering gallery modes in fluorescent microparticles,” Eur. Phys. J. Spec. Top. 223(10), 2041–2055 (2014).
[Crossref]

M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors (Basel) 10(6), 6257–6274 (2010).
[Crossref] [PubMed]

M. Himmelhaus and A. François, “In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor,” Biosens. Bioelectron. 25(2), 418–427 (2009).
[Crossref] [PubMed]

Holler, S.

Hu, J.

Humar, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electronically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Ilchenko, V. S.

Iwai, R.

K. Sasagawa, Z.- Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm 3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325 (2004).
[Crossref]

Ji, H.

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Y. Ruan, K. Boyd, H. Ji, A. François, H. Ebendorff-Heidepriem, J. Munch, and T. M. Monro, “Tellurite microspheres for nanoparticle sensing and novel light sources,” Opt. Express 22(10), 11995–12006 (2014).
[Crossref] [PubMed]

Jin, W. L.

Kasarova, S. N.

S. N. Kasarova, N. G. Sultanova, and I. D. Nikolov, “Temperature dependence of refractive characteristics of optical plastics,” J. Phys. Conf. Ser. 253, 012028 (2010).
[Crossref]

Khoshsima, M.

Kimble, H. J.

Kimerling, L. C.

Kirk, A. G.

Krishnamoorthy, S.

M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors (Basel) 10(6), 6257–6274 (2010).
[Crossref] [PubMed]

Ksendzov, A.

Langbein, W.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[Crossref]

Lessard, R.

R. Lessard, O. Rousseau-Cyr, M. Charlebois, C. Riviere, O. Mermut, and C. N. Allen, “Flow cytometer system for single-shot biosensing based on whispering gallery modes in fluorescent microspheres,” Proc. SPIE 8600, 86001 (2013).

Lin, Y.

Lutti, J.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[Crossref]

Mabuchi, H.

Maleki, L.

Matsko, A. B.

Mehrabani, S.

Meissner, K. E.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

Mermut, O.

R. Lessard, O. Rousseau-Cyr, M. Charlebois, C. Riviere, O. Mermut, and C. N. Allen, “Flow cytometer system for single-shot biosensing based on whispering gallery modes in fluorescent microspheres,” Proc. SPIE 8600, 86001 (2013).

Moirangthem, R. S.

A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9(4), 241–244 (2015).
[Crossref]

R. S. Moirangthem and A. Erbe, “Interfacial refractive index sensing using visible-excited intrinsic zinc oxide photoluminescence coupled to whispering gallery modes,” Appl. Phys. Lett. 103(5), 051108 (2013).
[Crossref]

Monro, T. M.

Mosk, A. P.

P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
[Crossref]

Munch, J.

Muševic, I.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electronically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Nikolov, I. D.

S. N. Kasarova, N. G. Sultanova, and I. D. Nikolov, “Temperature dependence of refractive characteristics of optical plastics,” J. Phys. Conf. Ser. 253, 012028 (2010).
[Crossref]

Nunoshita, M.

K. Sasagawa, Z.- Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm 3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325 (2004).
[Crossref]

Ohta, J.

K. Sasagawa, Z.- Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm 3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325 (2004).
[Crossref]

Olszyna, M.

R. Bischler, M. Olszyna, M. Himmelhaus, and L. Dähne, “Development of a fully automated in-vivo diagnostic system based on low-Q whispering gallery modes in fluorescent microparticles,” Eur. Phys. J. Spec. Top. 223(10), 2041–2055 (2014).
[Crossref]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electronically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Pang, S.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Pau, S.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Paunoiu, A.

A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9(4), 241–244 (2015).
[Crossref]

Peter, Y. A.

Pryamikov, A. D.

Qi-Shun, S.

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15(10), 2439–2444 (2006).
[Crossref]

Quan, H.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electronically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Reynolds, T.

A. François, T. Reynolds, and T. M. Monro, “A fiber-tip label-free biological sensing platform: a practical approach toward in-vivo sensing,” Sensors (Basel) 15(1), 1168–1181 (2015).
[Crossref] [PubMed]

J. M. M. Hall, V. Shahraam Afshar, M. R. Henderson, A. François, T. Reynolds, N. Riesen, and T. M. Monro, “Method for predicting whispering gallery mode spectra of spherical microresonators,” Opt. Express 23(8), 9924–9937 (2015).
[Crossref] [PubMed]

Riesen, N.

J. M. M. Hall, V. Shahraam Afshar, M. R. Henderson, A. François, T. Reynolds, N. Riesen, and T. M. Monro, “Method for predicting whispering gallery mode spectra of spherical microresonators,” Opt. Express 23(8), 9924–9937 (2015).
[Crossref] [PubMed]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Riviere, C.

R. Lessard, O. Rousseau-Cyr, M. Charlebois, C. Riviere, O. Mermut, and C. N. Allen, “Flow cytometer system for single-shot biosensing based on whispering gallery modes in fluorescent microspheres,” Proc. SPIE 8600, 86001 (2013).

Rousseau-Cyr, O.

R. Lessard, O. Rousseau-Cyr, M. Charlebois, C. Riviere, O. Mermut, and C. N. Allen, “Flow cytometer system for single-shot biosensing based on whispering gallery modes in fluorescent microspheres,” Proc. SPIE 8600, 86001 (2013).

Rowland, K. J.

Ruan, Y.

Santini, P.

Sasagawa, K.

K. Sasagawa, Z.- Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm 3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325 (2004).
[Crossref]

Savchenkov, A. A.

Schwesyg, J. R.

Shahraam Afshar, V.

Shi, C.

M. I. Cheema, C. Shi, A. M. Armani, and A. G. Kirk, “Optimizing the signal to noise ratio of microcavity sensors,” IEEE Photon. Technol. Lett. 26(20), 2023–2026 (2014).
[Crossref]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Streed, E. W.

Sultanova, N. G.

S. N. Kasarova, N. G. Sultanova, and I. D. Nikolov, “Temperature dependence of refractive characteristics of optical plastics,” J. Phys. Conf. Ser. 253, 012028 (2010).
[Crossref]

Sun, X.

Teraoka, I.

van der Molen, K. L.

P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
[Crossref]

Vernooy, D. W.

Vinogradova, O. I.

G. E. Yakubov, O. I. Vinogradova, and H. J. Butt, “A study of the linear tension effect on the polystyrene microsphere wettability with water,” Colloid J. 63(4), 518–525 (2001).
[Crossref]

Vollmer, F.

Z. Ballard, M. D. Baaske, and F. Vollmer, “Stand-off biodetection with free-space coupled asymmetric microsphere cavities,” Sensors (Basel) 15(4), 8968–8980 (2015).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

M. R. Foreman, W. L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22(5), 5491–5511 (2014).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

White, I. M.

Xiang, L.

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15(10), 2439–2444 (2006).
[Crossref]

Xue, L.

J. Zhang, L. Xue, and Y. Han, “Fabrication gradient surfaces by changing polystyrene microsphere topography,” Langmuir 21(1), 5–8 (2005).
[Crossref] [PubMed]

Yakubov, G. E.

G. E. Yakubov, O. I. Vinogradova, and H. J. Butt, “A study of the linear tension effect on the polystyrene microsphere wettability with water,” Colloid J. 63(4), 518–525 (2001).
[Crossref]

Yan-Fang, Y.

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15(10), 2439–2444 (2006).
[Crossref]

Yang, L.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref]

Yonezawa, Z.-

K. Sasagawa, Z.- Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm 3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325 (2004).
[Crossref]

Zhang, J.

J. Zhang, L. Xue, and Y. Han, “Fabrication gradient surfaces by changing polystyrene microsphere topography,” Langmuir 21(1), 5–8 (2005).
[Crossref] [PubMed]

Zhuang-Qi, C.

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15(10), 2439–2444 (2006).
[Crossref]

Zijlstra, P.

P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
[Crossref]

Zimmermann, A. S.

Appl. Phys. Lett. (7)

P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
[Crossref]

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

R. S. Moirangthem and A. Erbe, “Interfacial refractive index sensing using visible-excited intrinsic zinc oxide photoluminescence coupled to whispering gallery modes,” Appl. Phys. Lett. 103(5), 051108 (2013).
[Crossref]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[Crossref]

K. Sasagawa, Z.- Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm 3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325 (2004).
[Crossref]

Biosens. Bioelectron. (1)

M. Himmelhaus and A. François, “In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor,” Biosens. Bioelectron. 25(2), 418–427 (2009).
[Crossref] [PubMed]

Chin. Phys. (1)

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15(10), 2439–2444 (2006).
[Crossref]

Colloid J. (1)

G. E. Yakubov, O. I. Vinogradova, and H. J. Butt, “A study of the linear tension effect on the polystyrene microsphere wettability with water,” Colloid J. 63(4), 518–525 (2001).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

R. Bischler, M. Olszyna, M. Himmelhaus, and L. Dähne, “Development of a fully automated in-vivo diagnostic system based on low-Q whispering gallery modes in fluorescent microparticles,” Eur. Phys. J. Spec. Top. 223(10), 2041–2055 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. I. Cheema, C. Shi, A. M. Armani, and A. G. Kirk, “Optimizing the signal to noise ratio of microcavity sensors,” IEEE Photon. Technol. Lett. 26(20), 2023–2026 (2014).
[Crossref]

J. Chem. Phys. (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87(2), 1355–1360 (1987).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Conf. Ser. (1)

S. N. Kasarova, N. G. Sultanova, and I. D. Nikolov, “Temperature dependence of refractive characteristics of optical plastics,” J. Phys. Conf. Ser. 253, 012028 (2010).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Langmuir (1)

J. Zhang, L. Xue, and Y. Han, “Fabrication gradient surfaces by changing polystyrene microsphere topography,” Langmuir 21(1), 5–8 (2005).
[Crossref] [PubMed]

Nanophotonics (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electronically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Opt. Express (8)

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y. A. Peter, A. M. Armani, and A. G. Kirk, “Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy,” Opt. Express 20(8), 9090–9098 (2012).
[Crossref] [PubMed]

A. François, K. J. Rowland, S. V. Afshar, M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery mode microresonators,” Opt. Express 21(19), 22566–22577 (2013).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse, and D. Haertle, “Fabrication and characterization of whispering-gallery-mode resonators made of polymers,” Opt. Express 17(4), 2573–2578 (2009).
[Crossref] [PubMed]

J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse, and D. Haertle, “Fabrication and characterization of whispering-gallery-mode resonators made of polymers,” Opt. Express 17(4), 2573–2578 (2009).
[Crossref] [PubMed]

M. R. Foreman, W. L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22(5), 5491–5511 (2014).
[Crossref] [PubMed]

Y. Ruan, K. Boyd, H. Ji, A. François, H. Ebendorff-Heidepriem, J. Munch, and T. M. Monro, “Tellurite microspheres for nanoparticle sensing and novel light sources,” Opt. Express 22(10), 11995–12006 (2014).
[Crossref] [PubMed]

J. M. M. Hall, V. Shahraam Afshar, M. R. Henderson, A. François, T. Reynolds, N. Riesen, and T. M. Monro, “Method for predicting whispering gallery mode spectra of spherical microresonators,” Opt. Express 23(8), 9924–9937 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. A (1)

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38(7), 3410–3416 (1988).
[Crossref] [PubMed]

Phys. Status Solidi RRL (1)

A. Paunoiu, R. S. Moirangthem, and A. Erbe, “Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation,” Phys. Status Solidi RRL 9(4), 241–244 (2015).
[Crossref]

Proc. SPIE (1)

R. Lessard, O. Rousseau-Cyr, M. Charlebois, C. Riviere, O. Mermut, and C. N. Allen, “Flow cytometer system for single-shot biosensing based on whispering gallery modes in fluorescent microspheres,” Proc. SPIE 8600, 86001 (2013).

Sensors (Basel) (3)

Z. Ballard, M. D. Baaske, and F. Vollmer, “Stand-off biodetection with free-space coupled asymmetric microsphere cavities,” Sensors (Basel) 15(4), 8968–8980 (2015).
[Crossref] [PubMed]

A. François, T. Reynolds, and T. M. Monro, “A fiber-tip label-free biological sensing platform: a practical approach toward in-vivo sensing,” Sensors (Basel) 15(1), 1168–1181 (2015).
[Crossref] [PubMed]

M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors (Basel) 10(6), 6257–6274 (2010).
[Crossref] [PubMed]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering by a Sphere (Wiley-VCH Verlag GmbH, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A demonstration of how the position of the resonance peaks changes for a 5 μm radius polystyrene sphere (n1 = 1.59) initially in water (n2 = 1.3325) for incremental increases in the surrounding refractive index n2 up to 0.01 R.I.U. (b) Comparison of the predicted sensitivity from the analytical Chew model (red line) with the measured sensitivity for a R~5 μm polystyrene sphere in water.

Fig. 2
Fig. 2

Contour plot of the sensitivity in nm/R.I.U., calculated using the analytical Chew model for spherical resonators over the parameter space ranging from R = 1 – 10 μm and microsphere refractive index n1 = 1.45 – 2.0 within the wavelength range of 600 – 615 nm.

Fig. 3
Fig. 3

The quality factor, Qc, derived using the analytical Chew model for spherical resonators, including the limit placed on the observable Q of fluorescence based microsphere WGMs due to the finite resolution of the spectrometer used (4 pm), over the parameter space ranging from R = 1 – 10 μm and microsphere refractive index range of n1 = 1.45 – 2.0, and within the wavelength range of 600-615 nm. The white dotted-line highlights the resolution limit of the spectrometer beyond which any increase in the Q factor cannot be resolved experimentally.

Fig. 4
Fig. 4

Figure of Merit (FOM [nm/R.I.U.]) mapped over the parameter space R = 1 – 10 μm and microsphere refractive index n1 = 1.45 – 2.0 within the wavelength range 600-615 nm. The white dotted line represents the maximum value as limited by the spectrometer resolution of 4 pm for fluorescent microspheres.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P = 2 H n = 1 2 n + 1 3 ( J n | D n | 2 + G K n | D n ' | 2 )
H = 9 ε 1 4 ρ 1 5 ε 1 ε 2 μ 1 μ 2 , G = μ 1 μ 2 ε 1 ε 2 K n = ( ρ 1 3 2 ) [ j n 2 ( ρ 1 ) j n + 1 ( ρ 1 ) j n 1 ( ρ 1 ) ] , J n = K n 1 n ρ 1 j n 2 ( ρ 1 ) D n = ε 1 j n ( ρ 1 ) [ ρ 2 h n ( 1 ) ( ρ 2 ) ] ' ε 2 h n ( 1 ) ( ρ 2 ) [ ρ 1 j n ( ρ 1 ) ] ' , D n ' = D n ( ε 1 , 2 μ 1 , 2 ) ρ 1 , 2 = k 1 , 2 R
1 Q = 1 Q m + 1 Q s + 1 Q c
Q c = λ Δ λ
Q m = 2 π n 1 λ α m
Q s 3 λ 3 R 8 n 1 π 2 B 2 σ 2
F O M = Q S

Metrics