Abstract

We report evidence of intermittent behavior between chaotic and self-organized patterns while writing lines with a femtosecond lasers on the surface of a fused silica substrate. The patterns are accompanied by resolidified sub-microspheres and non-aligned grating lamellae. We observe that such dynamic behavior exhibits a striking similarity with the fluctuating content of a queuing system which alternate between random busy and idle periods.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado
Opt. Express 16(24) 19520-19534 (2008)

Direct volume variation measurements in fused silica specimens exposed to femtosecond laser

Audrey Champion and Yves Bellouard
Opt. Mater. Express 2(6) 789-798 (2012)

Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation

Audrey Champion, Martynas Beresna, Peter Kazansky, and Yves Bellouard
Opt. Express 21(21) 24942-24951 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor surface damage produced by Ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [Crossref]
  2. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
    [Crossref]
  3. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
    [Crossref]
  4. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
    [Crossref]
  5. Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2, 329–334 (2015).
  6. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  7. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20(4), 4389–4396 (2012).
    [Crossref] [PubMed]
  8. A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: Effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
    [Crossref] [PubMed]
  9. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1(5), 998–1008 (2011).
    [Crossref]
  10. A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789–798 (2012).
    [Crossref]
  11. P. G. Kazansky, M. Beresna, M. Gecevicius, C. Corbari, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, and Y. Bellouard, “Phase transitions induced by ultrafast laser writing in transparent materials,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO, Baltimore, MD (OSA, 2011).
    [Crossref]
  12. J. Medhi, Stochastic Models in Queueing Theory, 2nd Edition (Academic, 2002).
  13. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
    [Crossref] [PubMed]
  14. S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express 18(20), 21490–21497 (2010).
    [PubMed]
  15. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
    [Crossref]
  16. D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
    [Crossref]
  17. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
    [Crossref]
  18. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
    [Crossref]
  19. J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
    [Crossref]
  20. “HPFS Fused Silica Standard Grade - Product Information Sheet” (Corning Incorporated, 2008).
  21. J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook, 3rd ed. (CRC Press, 2000).
  22. G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
    [Crossref]
  23. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express 16(24), 19520–19534 (2008).
    [PubMed]
  24. T. Kumada, H. Akagi, R. Itakura, T. Otobe, and A. Yokoyama, “Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity,” J. Appl. Phys. 115(10), 103504 (2014).
    [Crossref]
  25. W. Weibull, “A statistical distribution function of wide applicability,” ASME J. Appl. Mech. 18, 293–297 (1951).

2015 (1)

2014 (3)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

T. Kumada, H. Akagi, R. Itakura, T. Otobe, and A. Yokoyama, “Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity,” J. Appl. Phys. 115(10), 103504 (2014).
[Crossref]

2013 (1)

2012 (5)

F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20(4), 4389–4396 (2012).
[Crossref] [PubMed]

A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789–798 (2012).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

2008 (2)

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express 16(24), 19520–19534 (2008).
[PubMed]

2007 (1)

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[Crossref]

2005 (1)

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

1982 (1)

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
[Crossref]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by Ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

1951 (1)

W. Weibull, “A statistical distribution function of wide applicability,” ASME J. Appl. Mech. 18, 293–297 (1951).

Akagi, H.

T. Kumada, H. Akagi, R. Itakura, T. Otobe, and A. Yokoyama, “Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity,” J. Appl. Phys. 115(10), 103504 (2014).
[Crossref]

Audouard, E.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Bachelier, G.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[Crossref]

Bado, P.

Barthel, E.

Bellouard, Y.

Beresna, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: Effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
[Crossref] [PubMed]

P. G. Kazansky, M. Beresna, M. Gecevicius, C. Corbari, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, and Y. Bellouard, “Phase transitions induced by ultrafast laser writing in transparent materials,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO, Baltimore, MD (OSA, 2011).
[Crossref]

Bhardwaj, V. R.

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by Ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Bonse, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[Crossref]

Bottinga, Y.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
[Crossref]

Brisset, F.

Buividas, R.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Bulgakova, N. M.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Canning, J.

Champion, A.

Cheng, Y.

Chin, S. L.

Cook, K.

Corbari, C.

P. G. Kazansky, M. Beresna, M. Gecevicius, C. Corbari, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, and Y. Bellouard, “Phase transitions induced by ultrafast laser writing in transparent materials,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO, Baltimore, MD (OSA, 2011).
[Crossref]

Corkum, P. B.

Costache, F.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Döring, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

Dugan, M.

Ehrentraut, L.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[Crossref]

Gawelda, W.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[Crossref]

Gecevicius, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

P. G. Kazansky, M. Beresna, M. Gecevicius, C. Corbari, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, and Y. Bellouard, “Phase transitions induced by ultrafast laser writing in transparent materials,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO, Baltimore, MD (OSA, 2011).
[Crossref]

Heinrich, M.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

Hertel, I. V.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

P. G. Kazansky, M. Beresna, M. Gecevicius, C. Corbari, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, and Y. Bellouard, “Phase transitions induced by ultrafast laser writing in transparent materials,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO, Baltimore, MD (OSA, 2011).
[Crossref]

Hnatovsky, C.

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Huang, M.

Itakura, R.

T. Kumada, H. Akagi, R. Itakura, T. Otobe, and A. Yokoyama, “Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity,” J. Appl. Phys. 115(10), 103504 (2014).
[Crossref]

Juodkazis, S.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Kazansky, P.

Kazansky, P. G.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

P. G. Kazansky, M. Beresna, M. Gecevicius, C. Corbari, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, and Y. Bellouard, “Phase transitions induced by ultrafast laser writing in transparent materials,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO, Baltimore, MD (OSA, 2011).
[Crossref]

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Kumada, T.

T. Kumada, H. Akagi, R. Itakura, T. Otobe, and A. Yokoyama, “Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity,” J. Appl. Phys. 115(10), 103504 (2014).
[Crossref]

Lancry, M.

Liang, F.

Liao, Y.

Mermillod-Blondin, A.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Meshcheryakov, Y. P.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Mikutis, M.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Miura, K.

P. G. Kazansky, M. Beresna, M. Gecevicius, C. Corbari, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, and Y. Bellouard, “Phase transitions induced by ultrafast laser writing in transparent materials,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO, Baltimore, MD (OSA, 2011).
[Crossref]

Ni, J.

Nolte, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

Otobe, T.

T. Kumada, H. Akagi, R. Itakura, T. Otobe, and A. Yokoyama, “Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity,” J. Appl. Phys. 115(10), 103504 (2014).
[Crossref]

Peschel, U.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

Poumellec, B.

Puerto, D.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[Crossref]

Qiao, L.

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Rajesh, S.

Rayner, D. M.

Reif, J.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Richet, P.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
[Crossref]

Richter, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

Rosenfeld, A.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Said, A. A.

Sakakura, M.

P. G. Kazansky, M. Beresna, M. Gecevicius, C. Corbari, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, and Y. Bellouard, “Phase transitions induced by ultrafast laser writing in transparent materials,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO, Baltimore, MD (OSA, 2011).
[Crossref]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

P. G. Kazansky, M. Beresna, M. Gecevicius, C. Corbari, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, and Y. Bellouard, “Phase transitions induced by ultrafast laser writing in transparent materials,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO, Baltimore, MD (OSA, 2011).
[Crossref]

Siegel, J.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[Crossref]

Simova, E.

Solis, J.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[Crossref]

Stoian, R.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Sugioka, K.

Tan, B.

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

Taylor, R. S.

Tünnermann, A.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

Urbain, G.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
[Crossref]

Vallée, R.

Varlamova, O.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Venkatakrishnan, K.

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

Vipparty, D.

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

Weibull, W.

W. Weibull, “A statistical distribution function of wide applicability,” ASME J. Appl. Mech. 18, 293–297 (1951).

Weickman, A.

Yokoyama, A.

T. Kumada, H. Akagi, R. Itakura, T. Otobe, and A. Yokoyama, “Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity,” J. Appl. Phys. 115(10), 103504 (2014).
[Crossref]

Adv. Opt. Photonics (1)

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Appl. Phys. Lett. (2)

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[Crossref]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

ASME J. Appl. Mech. (1)

W. Weibull, “A statistical distribution function of wide applicability,” ASME J. Appl. Mech. 18, 293–297 (1951).

Geochim. Cosmochim. Acta (1)

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
[Crossref]

J. Appl. Phys. (3)

T. Kumada, H. Akagi, R. Itakura, T. Otobe, and A. Yokoyama, “Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity,” J. Appl. Phys. 115(10), 103504 (2014).
[Crossref]

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

M. Birnbaum, “Semiconductor surface damage produced by Ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

J. Laser Appl. (2)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (2)

Optica (1)

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Other (4)

P. G. Kazansky, M. Beresna, M. Gecevicius, C. Corbari, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, and Y. Bellouard, “Phase transitions induced by ultrafast laser writing in transparent materials,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO, Baltimore, MD (OSA, 2011).
[Crossref]

J. Medhi, Stochastic Models in Queueing Theory, 2nd Edition (Academic, 2002).

“HPFS Fused Silica Standard Grade - Product Information Sheet” (Corning Incorporated, 2008).

J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook, 3rd ed. (CRC Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the laser processing indicating the scanning direction (v), the laser’s irradiation direction (k), the focal volume that modifies the material, the pattern that is written on the surface and the polarization (E), which is parallel to the laser-writing direction. The blue solid lines indicate the passage of the laser focal volume through the substrate.
Fig. 2
Fig. 2 SEM images of (a) unetched self-organized pattern for 180 nJ pulse energy, (b) unetched self-organized pattern for 200 nJ pulse energy also indicating the irregularity in lamellae formation (orange arrow), (c) and (d) the transition to chaotic from self-organized for both an unetched and etched specimen, respectively. The labels below each image refer to pulse energy, number of overlapping pulses, the energy deposited and the percentage of focal volume below the surface.
Fig. 3
Fig. 3 A comparison of the self-organized nanogratings for different energy depositions from a pulse energy of 180 nJ. The labels below the image represent the number of overlapping pulses, energy deposition and the volumetric percentage of the LAZ below the surface.
Fig. 4
Fig. 4 Sub-microspheres in the center of the laser patterns. (a) 180nJ, 25 pulses, 2 J/mm2, 35% of laser affected zone (LAZ) below surface; (b) 200nJ, 22 pulses, 2 J/mm2, 50% of LAZ below surface. (c) Magnified image of the nanospheres for 180 nJ, 2J/mm2 (different position from (a)) and (d) magnified image of 200nJ, 2J/mm2.
Fig. 5
Fig. 5 Adjacent lamellae overlap each other. Pulse energy was 180 nJ and the image label refers to the number of pulses, energy deposition and the percentage volume of the LAZ below the surface.
Fig. 6
Fig. 6 (a) Transition to self-organization with both self-organized and chaotic patterns extending more than 50µm in either direction, (b) a chaotic pattern between self-organization, and (c) the alternative case of a short section (~10 µm) of self-organization located between the chaotic patterns.
Fig. 7
Fig. 7 High magnification images of (a) the transition to disorder, (b) the transition to self-organized nanogratings from the same disordered section that began in (a); and (c) transition to a disordered structure and (d) transitioning back to self-organized again for the same disordered section. The value in the brackets indicates the percentage volume of the LAZ that is below the surface.
Fig. 8
Fig. 8 Overview of the transitions for different energy depositions and pulse energies. Black regions represent the self-organized patterns and red are the chaotic patterns. For the 180 nJ/pulse set, a pair of lines with the same exposure conditions are shown. The light grey shading on the ends of the 3 – 5 J/mm2 laser tracks signify the zones that were excluded from the statistical analysis in the queueing system section.
Fig. 9
Fig. 9 (a) Overview of the transitions for the in-plane laser tracks of the 2 – 5 J/mm2 energy depositions for 180 nJ pulse energy. Black regions: self-organized patterns; and red: chaotic patterns. (b) A transition from self-organized to chaotic for the 3 J/mm2 laser track with approximately 50 ± 15% of the laser volume below the surface.
Fig. 10
Fig. 10 Laser power fluctuations recording during laser processing of specimen for 180nJ/pulse (top), 200 nJ/pulse (middle) and 220 nJ/pulse (bottom). The light green bands represent the duration of the laser when processing the 2 J/mm2 (left) and 10 J/mm2 (right) tracks. The exact position of laser track processing (light green bands) was not known precisely and the uncertainty range is shown by the square bracket above the green bands.
Fig. 11
Fig. 11 Typical regenerative pattern observed in a glass specimen scanned by a femtosecond laser with uniform translation velocity. Orange (top) and blue (bottom) bars indicate chaotic and self-organized patters, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ( σ ) = 1 exp [ ( σ σ N ) m ]

Metrics