Abstract

We study anisotropic Stimulated Emission Depletion (STED) from dye molecules, which are collectively ordered in a host liquid crystal. Due to the ordering of fluorescent emitters, the STED efficiency depends on the polarization of the depletion beam and time-delay of the STED pulse. The depletion efficiency is highest at lower temperatures in the highly ordered smectic-A phase and deteriorates in the higher temperature nematic and isotropic phases. We demonstrate by temporal tuning of STED that it is possible to generate an arbitrary sequence of nanosecond fluorescent pulses with variable width and variable delay. Our results show that the STED mechanism in principle allows for very fast (GHz) and efficient control of light by light, which could in the future be used for all-optical control of the flow of light in photonic microdevices based on liquid crystals. Using STED anisotropy and time-control, new modalities of STED imaging in liquid crystals could be developed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lasing and waveguiding in smectic A liquid crystal optical fibers

Karthik Peddireddy, V. S. R. Jampani, Shashi Thutupalli, Stephan Herminghaus, Christian Bahr, and Igor Muševič
Opt. Express 21(25) 30233-30242 (2013)

Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators

Alexandr Jonáš, Zdeněk Pilát, Jan Ježek, Silvie Bernatová, Tomáš Fořt, Pavel Zemánek, Mehdi Aas, and Alper Kiraz
J. Opt. Soc. Am. B 34(9) 1855-1864 (2017)

Two-photon excitation and stimulated emission depletion by a single wavelength

Teodora Scheul, Ciro D’Amico, Irène Wang, and Jean-Claude Vial
Opt. Express 19(19) 18036-18048 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichman, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref] [PubMed]
  2. I. Gryczynski, J. Kusba, and J. R. Lakowicz, “Light quenching of fluorescence using time-delayed laser pulses as observed by frequency-domain fluorometry,” J. Phys. Chem. 98, 8886–8895 (1994).
    [Crossref]
  3. J. R. Lakowicz, I. Gryczynski, V. Bogdanov, and J. Kusba, “Light quenching and fluorescence depolarization of Rhodamine B and applications of this phenomenon to biophysics,” J. Phys. Chem. 98, 334–342 (1994).
    [Crossref]
  4. J. Kusba, V. Bogdanov, I. Gryczynski, and J. R. Lakowicz, “Theory of light quenching: effects on fluorescence polarization, intensity, and anisotropy decays,” Biophys. J. 67, 2024–2040 (1994).
    [Crossref]
  5. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954–956 (1999).
    [Crossref]
  6. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
    [Crossref] [PubMed]
  7. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
    [Crossref] [PubMed]
  8. J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses,” Opt. Express 19, 3130–3143 (2011).
    [Crossref] [PubMed]
  9. B. Bahadur, “Guest-host effect,” in Handbook of Liquid Crystals Vol. 2A, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, eds., (Wiley-VCH Verlag GmbHWeinheim, 1998), pp. 257–302
  10. C. Zannoni, “A theory of time dependent fluorescence depolarization in liquid crystals,” Mol. Phys. 38, 1813–1827 (1979).
    [Crossref]
  11. R. Arcioni, F. Bertinelli, R. Tarroni, and C. Zannoni, “Time resolved depolarization fluorescence in a nematic liquid crystal,” Mol. Phys. 61, 1161–1181 (1987).
    [Crossref]
  12. I. I. Smalyukh, S. V. Shyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal microscopy,” Chem. Phys. Lett. 336, 88–96 (2001).
    [Crossref]
  13. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
    [Crossref]
  14. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
    [Crossref]
  15. D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
    [Crossref] [PubMed]
  16. G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: A novel multifunctional microphotonic device,” Adv. Mat. 23, 5773–5778 (2011).
    [Crossref]
  17. M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express 19, 19836–19844 (2011).
    [Crossref] [PubMed]
  18. K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, and Ch. Bahr, “Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions,” Langmuir 28, 12426–12431 (2012).
    [Crossref] [PubMed]
  19. K. Peddireddy, V. S. R. Jampani, S. Thutupalli, S. Herminghaus, Ch. Bahr, and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21, 30233–30242 (2013)
    [Crossref]
  20. V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity,” Opt. Express 21, 20506–20516 (2013).
    [Crossref] [PubMed]
  21. E. Brasselet, N. Murazawa, H. Misawa, and S. Joudkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
    [Crossref] [PubMed]
  22. G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nature Comm. 5, 4491 (2014).
    [Crossref]
  23. R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab on a Chip 13459–467 (2013).
    [Crossref]
  24. I. Muševič, “Nematic colloids, topology and photonics,” Phil. Trans. Royal Soc. A 371, 20120266 (2013).
    [Crossref]
  25. I. Muševič, “Integrated and topological liquid crystal photonics,” Liquid Crystals 41, 418–429 (2014).
    [Crossref]
  26. H. Tajalli, A. Ghanadzadeh Gilani, M. S. Zakerhamidi, and P. Tajalli, “The photophysical properties of Nile red and Nile blue in ordered anisotropic media,” Dyes and Pigments 78, 15–24 (2008).
    [Crossref]
  27. M. Choi, D. Jin, and H. Kim, “Fluorescence anisotropy of Nile red and Oxazine 725 in an isotropic liquid crystal,” J. Phys. Chem. B 101, 8092–8097 (1997).
    [Crossref]
  28. M. Vilfan, T. Apih, P. J. Sebastião, G. Lahajnar, and S. Žumer, “Liquid crystal 8CB in random porous glass: NMR relaxometry study of molecular diffusion and director fluctuations,” Phys. Rev. E 76, 051708 (2007).
    [Crossref]
  29. F. M. Aliev, Z. Nazario, and G. P. Sinha, “Broadband dielectric spectroscopy of confined liquid crystals,” J. Non-Cryst. Solids 305, 218–225 (2002).
    [Crossref]
  30. T. Scheul, C. D’Amico, I. Wang, and J.-C. Vial, “Two-photon excitation and stimulated emission depletion by a single wavelength,” Opt. Express 19, 18036–18048 (2011).
    [Crossref] [PubMed]
  31. A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongin, L. Porres, and M. Blanchard-Desce, “Time-resolved stimulated emission depletion in two-photon excited states,” Biochemical Soc. Trans. 31, 1047–1051 (2003).
    [Crossref]

2014 (2)

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nature Comm. 5, 4491 (2014).
[Crossref]

I. Muševič, “Integrated and topological liquid crystal photonics,” Liquid Crystals 41, 418–429 (2014).
[Crossref]

2013 (4)

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab on a Chip 13459–467 (2013).
[Crossref]

I. Muševič, “Nematic colloids, topology and photonics,” Phil. Trans. Royal Soc. A 371, 20120266 (2013).
[Crossref]

V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity,” Opt. Express 21, 20506–20516 (2013).
[Crossref] [PubMed]

K. Peddireddy, V. S. R. Jampani, S. Thutupalli, S. Herminghaus, Ch. Bahr, and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21, 30233–30242 (2013)
[Crossref]

2012 (1)

K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, and Ch. Bahr, “Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions,” Langmuir 28, 12426–12431 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (1)

2009 (2)

E. Brasselet, N. Murazawa, H. Misawa, and S. Joudkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

2008 (2)

H. Tajalli, A. Ghanadzadeh Gilani, M. S. Zakerhamidi, and P. Tajalli, “The photophysical properties of Nile red and Nile blue in ordered anisotropic media,” Dyes and Pigments 78, 15–24 (2008).
[Crossref]

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
[Crossref] [PubMed]

2007 (1)

M. Vilfan, T. Apih, P. J. Sebastião, G. Lahajnar, and S. Žumer, “Liquid crystal 8CB in random porous glass: NMR relaxometry study of molecular diffusion and director fluctuations,” Phys. Rev. E 76, 051708 (2007).
[Crossref]

2003 (1)

A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongin, L. Porres, and M. Blanchard-Desce, “Time-resolved stimulated emission depletion in two-photon excited states,” Biochemical Soc. Trans. 31, 1047–1051 (2003).
[Crossref]

2002 (1)

F. M. Aliev, Z. Nazario, and G. P. Sinha, “Broadband dielectric spectroscopy of confined liquid crystals,” J. Non-Cryst. Solids 305, 218–225 (2002).
[Crossref]

2001 (1)

I. I. Smalyukh, S. V. Shyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal microscopy,” Chem. Phys. Lett. 336, 88–96 (2001).
[Crossref]

2000 (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref] [PubMed]

1999 (1)

1997 (1)

M. Choi, D. Jin, and H. Kim, “Fluorescence anisotropy of Nile red and Oxazine 725 in an isotropic liquid crystal,” J. Phys. Chem. B 101, 8092–8097 (1997).
[Crossref]

1994 (4)

I. Gryczynski, J. Kusba, and J. R. Lakowicz, “Light quenching of fluorescence using time-delayed laser pulses as observed by frequency-domain fluorometry,” J. Phys. Chem. 98, 8886–8895 (1994).
[Crossref]

J. R. Lakowicz, I. Gryczynski, V. Bogdanov, and J. Kusba, “Light quenching and fluorescence depolarization of Rhodamine B and applications of this phenomenon to biophysics,” J. Phys. Chem. 98, 334–342 (1994).
[Crossref]

J. Kusba, V. Bogdanov, I. Gryczynski, and J. R. Lakowicz, “Theory of light quenching: effects on fluorescence polarization, intensity, and anisotropy decays,” Biophys. J. 67, 2024–2040 (1994).
[Crossref]

S. W. Hell and J. Wichman, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref] [PubMed]

1987 (1)

R. Arcioni, F. Bertinelli, R. Tarroni, and C. Zannoni, “Time resolved depolarization fluorescence in a nematic liquid crystal,” Mol. Phys. 61, 1161–1181 (1987).
[Crossref]

1979 (1)

C. Zannoni, “A theory of time dependent fluorescence depolarization in liquid crystals,” Mol. Phys. 38, 1813–1827 (1979).
[Crossref]

Aliev, F. M.

F. M. Aliev, Z. Nazario, and G. P. Sinha, “Broadband dielectric spectroscopy of confined liquid crystals,” J. Non-Cryst. Solids 305, 218–225 (2002).
[Crossref]

Apih, T.

M. Vilfan, T. Apih, P. J. Sebastião, G. Lahajnar, and S. Žumer, “Liquid crystal 8CB in random porous glass: NMR relaxometry study of molecular diffusion and director fluctuations,” Phys. Rev. E 76, 051708 (2007).
[Crossref]

Arcioni, R.

R. Arcioni, F. Bertinelli, R. Tarroni, and C. Zannoni, “Time resolved depolarization fluorescence in a nematic liquid crystal,” Mol. Phys. 61, 1161–1181 (1987).
[Crossref]

Armoogum, D. A.

A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongin, L. Porres, and M. Blanchard-Desce, “Time-resolved stimulated emission depletion in two-photon excited states,” Biochemical Soc. Trans. 31, 1047–1051 (2003).
[Crossref]

Bahadur, B.

B. Bahadur, “Guest-host effect,” in Handbook of Liquid Crystals Vol. 2A, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, eds., (Wiley-VCH Verlag GmbHWeinheim, 1998), pp. 257–302

Bahr, Ch.

K. Peddireddy, V. S. R. Jampani, S. Thutupalli, S. Herminghaus, Ch. Bahr, and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21, 30233–30242 (2013)
[Crossref]

K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, and Ch. Bahr, “Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions,” Langmuir 28, 12426–12431 (2012).
[Crossref] [PubMed]

Bain, A. J.

A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongin, L. Porres, and M. Blanchard-Desce, “Time-resolved stimulated emission depletion in two-photon excited states,” Biochemical Soc. Trans. 31, 1047–1051 (2003).
[Crossref]

Bartolino, R.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: A novel multifunctional microphotonic device,” Adv. Mat. 23, 5773–5778 (2011).
[Crossref]

Bertinelli, F.

R. Arcioni, F. Bertinelli, R. Tarroni, and C. Zannoni, “Time resolved depolarization fluorescence in a nematic liquid crystal,” Mol. Phys. 61, 1161–1181 (1987).
[Crossref]

Blanchard-Desce, M.

A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongin, L. Porres, and M. Blanchard-Desce, “Time-resolved stimulated emission depletion in two-photon excited states,” Biochemical Soc. Trans. 31, 1047–1051 (2003).
[Crossref]

Bogdanov, V.

J. R. Lakowicz, I. Gryczynski, V. Bogdanov, and J. Kusba, “Light quenching and fluorescence depolarization of Rhodamine B and applications of this phenomenon to biophysics,” J. Phys. Chem. 98, 334–342 (1994).
[Crossref]

J. Kusba, V. Bogdanov, I. Gryczynski, and J. R. Lakowicz, “Theory of light quenching: effects on fluorescence polarization, intensity, and anisotropy decays,” Biophys. J. 67, 2024–2040 (1994).
[Crossref]

Brasselet, E.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nature Comm. 5, 4491 (2014).
[Crossref]

E. Brasselet, N. Murazawa, H. Misawa, and S. Joudkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Bückers, J.

Choi, M.

M. Choi, D. Jin, and H. Kim, “Fluorescence anisotropy of Nile red and Oxazine 725 in an isotropic liquid crystal,” J. Phys. Chem. B 101, 8092–8097 (1997).
[Crossref]

Cipparrone, G.

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab on a Chip 13459–467 (2013).
[Crossref]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: A novel multifunctional microphotonic device,” Adv. Mat. 23, 5773–5778 (2011).
[Crossref]

Coles, H. J.

D’Amico, C.

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref] [PubMed]

Gardiner, D. J.

Ghanadzadeh Gilani, A.

H. Tajalli, A. Ghanadzadeh Gilani, M. S. Zakerhamidi, and P. Tajalli, “The photophysical properties of Nile red and Nile blue in ordered anisotropic media,” Dyes and Pigments 78, 15–24 (2008).
[Crossref]

Gryczynski, I.

J. R. Lakowicz, I. Gryczynski, V. Bogdanov, and J. Kusba, “Light quenching and fluorescence depolarization of Rhodamine B and applications of this phenomenon to biophysics,” J. Phys. Chem. 98, 334–342 (1994).
[Crossref]

J. Kusba, V. Bogdanov, I. Gryczynski, and J. R. Lakowicz, “Theory of light quenching: effects on fluorescence polarization, intensity, and anisotropy decays,” Biophys. J. 67, 2024–2040 (1994).
[Crossref]

I. Gryczynski, J. Kusba, and J. R. Lakowicz, “Light quenching of fluorescence using time-delayed laser pulses as observed by frequency-domain fluorometry,” J. Phys. Chem. 98, 8886–8895 (1994).
[Crossref]

Hands, P. J. W.

Hell, S. W.

Herminghaus, S.

K. Peddireddy, V. S. R. Jampani, S. Thutupalli, S. Herminghaus, Ch. Bahr, and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21, 30233–30242 (2013)
[Crossref]

K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, and Ch. Bahr, “Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions,” Langmuir 28, 12426–12431 (2012).
[Crossref] [PubMed]

Hernandez, R. J.

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab on a Chip 13459–467 (2013).
[Crossref]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: A novel multifunctional microphotonic device,” Adv. Mat. 23, 5773–5778 (2011).
[Crossref]

Humar, M.

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref] [PubMed]

Jampani, V. S. R.

Jin, D.

M. Choi, D. Jin, and H. Kim, “Fluorescence anisotropy of Nile red and Oxazine 725 in an isotropic liquid crystal,” J. Phys. Chem. B 101, 8092–8097 (1997).
[Crossref]

Joudkazis, S.

E. Brasselet, N. Murazawa, H. Misawa, and S. Joudkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Kastrup, L.

Kim, H.

M. Choi, D. Jin, and H. Kim, “Fluorescence anisotropy of Nile red and Oxazine 725 in an isotropic liquid crystal,” J. Phys. Chem. B 101, 8092–8097 (1997).
[Crossref]

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref] [PubMed]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954–956 (1999).
[Crossref]

Kumar, P.

K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, and Ch. Bahr, “Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions,” Langmuir 28, 12426–12431 (2012).
[Crossref] [PubMed]

Kusba, J.

I. Gryczynski, J. Kusba, and J. R. Lakowicz, “Light quenching of fluorescence using time-delayed laser pulses as observed by frequency-domain fluorometry,” J. Phys. Chem. 98, 8886–8895 (1994).
[Crossref]

J. R. Lakowicz, I. Gryczynski, V. Bogdanov, and J. Kusba, “Light quenching and fluorescence depolarization of Rhodamine B and applications of this phenomenon to biophysics,” J. Phys. Chem. 98, 334–342 (1994).
[Crossref]

J. Kusba, V. Bogdanov, I. Gryczynski, and J. R. Lakowicz, “Theory of light quenching: effects on fluorescence polarization, intensity, and anisotropy decays,” Biophys. J. 67, 2024–2040 (1994).
[Crossref]

Lahajnar, G.

M. Vilfan, T. Apih, P. J. Sebastião, G. Lahajnar, and S. Žumer, “Liquid crystal 8CB in random porous glass: NMR relaxometry study of molecular diffusion and director fluctuations,” Phys. Rev. E 76, 051708 (2007).
[Crossref]

Lakowicz, J. R.

J. Kusba, V. Bogdanov, I. Gryczynski, and J. R. Lakowicz, “Theory of light quenching: effects on fluorescence polarization, intensity, and anisotropy decays,” Biophys. J. 67, 2024–2040 (1994).
[Crossref]

I. Gryczynski, J. Kusba, and J. R. Lakowicz, “Light quenching of fluorescence using time-delayed laser pulses as observed by frequency-domain fluorometry,” J. Phys. Chem. 98, 8886–8895 (1994).
[Crossref]

J. R. Lakowicz, I. Gryczynski, V. Bogdanov, and J. Kusba, “Light quenching and fluorescence depolarization of Rhodamine B and applications of this phenomenon to biophysics,” J. Phys. Chem. 98, 334–342 (1994).
[Crossref]

Lavrentovich, O. D.

I. I. Smalyukh, S. V. Shyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal microscopy,” Chem. Phys. Lett. 336, 88–96 (2001).
[Crossref]

Marsh, R. J.

A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongin, L. Porres, and M. Blanchard-Desce, “Time-resolved stimulated emission depletion in two-photon excited states,” Biochemical Soc. Trans. 31, 1047–1051 (2003).
[Crossref]

Mazzulla, A.

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab on a Chip 13459–467 (2013).
[Crossref]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: A novel multifunctional microphotonic device,” Adv. Mat. 23, 5773–5778 (2011).
[Crossref]

Misawa, H.

E. Brasselet, N. Murazawa, H. Misawa, and S. Joudkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Mongin, O.

A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongin, L. Porres, and M. Blanchard-Desce, “Time-resolved stimulated emission depletion in two-photon excited states,” Biochemical Soc. Trans. 31, 1047–1051 (2003).
[Crossref]

Morris, S. M.

Mowatt, C.

Murazawa, N.

E. Brasselet, N. Murazawa, H. Misawa, and S. Joudkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Muševic, I.

Nazario, Z.

F. M. Aliev, Z. Nazario, and G. P. Sinha, “Broadband dielectric spectroscopy of confined liquid crystals,” J. Non-Cryst. Solids 305, 218–225 (2002).
[Crossref]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Pane, A.

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab on a Chip 13459–467 (2013).
[Crossref]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: A novel multifunctional microphotonic device,” Adv. Mat. 23, 5773–5778 (2011).
[Crossref]

Peddireddy, K.

K. Peddireddy, V. S. R. Jampani, S. Thutupalli, S. Herminghaus, Ch. Bahr, and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21, 30233–30242 (2013)
[Crossref]

K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, and Ch. Bahr, “Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions,” Langmuir 28, 12426–12431 (2012).
[Crossref] [PubMed]

Porres, L.

A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongin, L. Porres, and M. Blanchard-Desce, “Time-resolved stimulated emission depletion in two-photon excited states,” Biochemical Soc. Trans. 31, 1047–1051 (2003).
[Crossref]

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Rittweger, E.

Rutledge, R.

Scheul, T.

Sebastião, P. J.

M. Vilfan, T. Apih, P. J. Sebastião, G. Lahajnar, and S. Žumer, “Liquid crystal 8CB in random porous glass: NMR relaxometry study of molecular diffusion and director fluctuations,” Phys. Rev. E 76, 051708 (2007).
[Crossref]

Shyanovskii, S. V.

I. I. Smalyukh, S. V. Shyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal microscopy,” Chem. Phys. Lett. 336, 88–96 (2001).
[Crossref]

Sinha, G. P.

F. M. Aliev, Z. Nazario, and G. P. Sinha, “Broadband dielectric spectroscopy of confined liquid crystals,” J. Non-Cryst. Solids 305, 218–225 (2002).
[Crossref]

Smalyukh, I. I.

I. I. Smalyukh, S. V. Shyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal microscopy,” Chem. Phys. Lett. 336, 88–96 (2001).
[Crossref]

Tajalli, H.

H. Tajalli, A. Ghanadzadeh Gilani, M. S. Zakerhamidi, and P. Tajalli, “The photophysical properties of Nile red and Nile blue in ordered anisotropic media,” Dyes and Pigments 78, 15–24 (2008).
[Crossref]

Tajalli, P.

H. Tajalli, A. Ghanadzadeh Gilani, M. S. Zakerhamidi, and P. Tajalli, “The photophysical properties of Nile red and Nile blue in ordered anisotropic media,” Dyes and Pigments 78, 15–24 (2008).
[Crossref]

Tarroni, R.

R. Arcioni, F. Bertinelli, R. Tarroni, and C. Zannoni, “Time resolved depolarization fluorescence in a nematic liquid crystal,” Mol. Phys. 61, 1161–1181 (1987).
[Crossref]

Thutupalli, S.

K. Peddireddy, V. S. R. Jampani, S. Thutupalli, S. Herminghaus, Ch. Bahr, and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21, 30233–30242 (2013)
[Crossref]

K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, and Ch. Bahr, “Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions,” Langmuir 28, 12426–12431 (2012).
[Crossref] [PubMed]

Tkachenko, G.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nature Comm. 5, 4491 (2014).
[Crossref]

Vial, J.-C.

Vicidomini, G.

Vilfan, M.

M. Vilfan, T. Apih, P. J. Sebastião, G. Lahajnar, and S. Žumer, “Liquid crystal 8CB in random porous glass: NMR relaxometry study of molecular diffusion and director fluctuations,” Phys. Rev. E 76, 051708 (2007).
[Crossref]

Volke-Sepulveda, K.

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab on a Chip 13459–467 (2013).
[Crossref]

Wang, I.

Wichman, J.

Wildanger, D.

Wilkinson, T. D.

Zakerhamidi, M. S.

H. Tajalli, A. Ghanadzadeh Gilani, M. S. Zakerhamidi, and P. Tajalli, “The photophysical properties of Nile red and Nile blue in ordered anisotropic media,” Dyes and Pigments 78, 15–24 (2008).
[Crossref]

Zannoni, C.

R. Arcioni, F. Bertinelli, R. Tarroni, and C. Zannoni, “Time resolved depolarization fluorescence in a nematic liquid crystal,” Mol. Phys. 61, 1161–1181 (1987).
[Crossref]

C. Zannoni, “A theory of time dependent fluorescence depolarization in liquid crystals,” Mol. Phys. 38, 1813–1827 (1979).
[Crossref]

Žumer, S.

M. Vilfan, T. Apih, P. J. Sebastião, G. Lahajnar, and S. Žumer, “Liquid crystal 8CB in random porous glass: NMR relaxometry study of molecular diffusion and director fluctuations,” Phys. Rev. E 76, 051708 (2007).
[Crossref]

Adv. Mat. (1)

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: A novel multifunctional microphotonic device,” Adv. Mat. 23, 5773–5778 (2011).
[Crossref]

Biochemical Soc. Trans. (1)

A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongin, L. Porres, and M. Blanchard-Desce, “Time-resolved stimulated emission depletion in two-photon excited states,” Biochemical Soc. Trans. 31, 1047–1051 (2003).
[Crossref]

Biophys. J. (1)

J. Kusba, V. Bogdanov, I. Gryczynski, and J. R. Lakowicz, “Theory of light quenching: effects on fluorescence polarization, intensity, and anisotropy decays,” Biophys. J. 67, 2024–2040 (1994).
[Crossref]

Chem. Phys. Lett. (1)

I. I. Smalyukh, S. V. Shyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal microscopy,” Chem. Phys. Lett. 336, 88–96 (2001).
[Crossref]

Dyes and Pigments (1)

H. Tajalli, A. Ghanadzadeh Gilani, M. S. Zakerhamidi, and P. Tajalli, “The photophysical properties of Nile red and Nile blue in ordered anisotropic media,” Dyes and Pigments 78, 15–24 (2008).
[Crossref]

J. Non-Cryst. Solids (1)

F. M. Aliev, Z. Nazario, and G. P. Sinha, “Broadband dielectric spectroscopy of confined liquid crystals,” J. Non-Cryst. Solids 305, 218–225 (2002).
[Crossref]

J. Phys. Chem. (2)

I. Gryczynski, J. Kusba, and J. R. Lakowicz, “Light quenching of fluorescence using time-delayed laser pulses as observed by frequency-domain fluorometry,” J. Phys. Chem. 98, 8886–8895 (1994).
[Crossref]

J. R. Lakowicz, I. Gryczynski, V. Bogdanov, and J. Kusba, “Light quenching and fluorescence depolarization of Rhodamine B and applications of this phenomenon to biophysics,” J. Phys. Chem. 98, 334–342 (1994).
[Crossref]

J. Phys. Chem. B (1)

M. Choi, D. Jin, and H. Kim, “Fluorescence anisotropy of Nile red and Oxazine 725 in an isotropic liquid crystal,” J. Phys. Chem. B 101, 8092–8097 (1997).
[Crossref]

Lab on a Chip (1)

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab on a Chip 13459–467 (2013).
[Crossref]

Langmuir (1)

K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, and Ch. Bahr, “Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions,” Langmuir 28, 12426–12431 (2012).
[Crossref] [PubMed]

Liquid Crystals (1)

I. Muševič, “Integrated and topological liquid crystal photonics,” Liquid Crystals 41, 418–429 (2014).
[Crossref]

Mol. Phys. (2)

C. Zannoni, “A theory of time dependent fluorescence depolarization in liquid crystals,” Mol. Phys. 38, 1813–1827 (1979).
[Crossref]

R. Arcioni, F. Bertinelli, R. Tarroni, and C. Zannoni, “Time resolved depolarization fluorescence in a nematic liquid crystal,” Mol. Phys. 61, 1161–1181 (1987).
[Crossref]

Nat. Photonics (1)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Nature Comm. (1)

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nature Comm. 5, 4491 (2014).
[Crossref]

Opt. Express (8)

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express 19, 19836–19844 (2011).
[Crossref] [PubMed]

T. Scheul, C. D’Amico, I. Wang, and J.-C. Vial, “Two-photon excitation and stimulated emission depletion by a single wavelength,” Opt. Express 19, 18036–18048 (2011).
[Crossref] [PubMed]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
[Crossref] [PubMed]

K. Peddireddy, V. S. R. Jampani, S. Thutupalli, S. Herminghaus, Ch. Bahr, and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21, 30233–30242 (2013)
[Crossref]

V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity,” Opt. Express 21, 20506–20516 (2013).
[Crossref] [PubMed]

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
[Crossref] [PubMed]

J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses,” Opt. Express 19, 3130–3143 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Phil. Trans. Royal Soc. A (1)

I. Muševič, “Nematic colloids, topology and photonics,” Phil. Trans. Royal Soc. A 371, 20120266 (2013).
[Crossref]

Phys. Rev. E (1)

M. Vilfan, T. Apih, P. J. Sebastião, G. Lahajnar, and S. Žumer, “Liquid crystal 8CB in random porous glass: NMR relaxometry study of molecular diffusion and director fluctuations,” Phys. Rev. E 76, 051708 (2007).
[Crossref]

Phys. Rev. Lett. (1)

E. Brasselet, N. Murazawa, H. Misawa, and S. Joudkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref] [PubMed]

Other (1)

B. Bahadur, “Guest-host effect,” in Handbook of Liquid Crystals Vol. 2A, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, eds., (Wiley-VCH Verlag GmbHWeinheim, 1998), pp. 257–302

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Setup for the STED experiment. White light from the laser is split into two beams of perpendicular polarizations by a polarizing beam-splitter (PBS). For the excitation beam (green) we choose the wavelength band with a bandpass filter (F1). The beam passes through a continuous neutral density attenuator (A1) and is coupled into a polarization-maintaining single mode optical fiber (PMSMF1). The light is collimated at the fiber output. The STED beam wavelength (red) is chosen by a dispersing-prism-based wavelength selector by simply changing position of the slit. This beam also passes through a continuous attenuator (A2) and is coupled into the polarization-maintaining single mode fiber (PMSMF2) to be cleaned of higher optical modes. Collimator C2 is mounted so that it can be translated along the optical axis and rotated around it. This enables the change of the optical path and the rotation of the STED beam polarization. After collimation at fiber outputs, both beams are joint by a dichroic mirror (D1) that reflects wavelengths shorter than 638 nm. The beams are carefully aligned and sent into the microscope through its back port. They are both reflected to the sample on a double edge dichroic mirror (D2) and focused through a 60× water immersion objective. Fluorescence (yellow) is transmitted through the double edge dichroic mirror (D2) and a bandpass filter (F2) and sent to one of the detectors. M1, M2, M3, M4: mirrors, DP: dispersive prism, CL: cylindrical lens, S: shutter, FP1, FP2: fiber ports, MMF: multi-mode fiber.
Fig. 2
Fig. 2 Angular dependence of fluorescence in 8CB/Nile Red mixture. For each LC phase the fluorescence signal is divided by its value at 90° and presented in dependence of the angle between the excitation beam polarization and the director. In smectic-A phase the ratio between intensities at parallel (0°) and perpendicular (90°) arrangements is around 3, in nematic phase around 2 and in isotropic phase fluorescence intensity is independent of the angle between excitation beam polarization and the director.
Fig. 3
Fig. 3 Microscope images and fluorescence intensity profiles of the illuminated area of the 8CB/Nile Red mixture. Both polarizations of the excitation and STED beam are parallel to the director. (a), (b) Only the excitation beam (532 nm) is illuminating the sample, with polarization along the director (and the radiative dipole of Nile Red), which results in the observed fluorescence emission. (c), (d) The STED beam (705 nm), polarized along the director is switched on, which causes a strong decrease of fluorescence emission.
Fig. 4
Fig. 4 Optimization of the STED beam wavelength and pulse delay. The polarizations of the STED and excitation beams are parallel to the director. (a) For Nile Red dye in 8CB, the STED effect is strongest if we use 705 nm wavelength for the STED beam. (b) Depletion of the fluorescence caused by the STED beam depends on the time-delay between the excitation and the STED pulse and is strongest at the coupler position, which corresponds to approximately 150 ps delay. The depletion ”ξ” denotes the ratio of depleted and non-depleted intensities.
Fig. 5
Fig. 5 Dependence of the STED depletion on the excitation and STED beam average power. The polarizations of the STED and excitation beams are parallel to the director. (a) STED depletion is measured at constant STED beam intensity and the excitation power is increased. Depletion is poor at low excitation beam power, because the fluorescence intensity here becomes comparable to fluorescence intensity caused by the STED beam itself. (b) We show measurement of STED depletion at constant excitation beam power when the STED beam power increases. Two measurements are presented, one (black circles) for the case when the STED beam polarization is parallel to the excitation beam polarization and the director field and the other (red squares) for the case when it is perpendicular.
Fig. 6
Fig. 6 The angular dependence of the STED effect in smectic-A, nematic and isotropic phase. In all cases the polarization of the excitation beam is set parallel to the director and the STED polarization is set at an angle from 0 to 90 degrees. Depletion ”ξ” denotes the ratio of depleted and non-depleted intensities.
Fig. 7
Fig. 7 Temperature dependence of the STED efficiency at 10 different angles of the polarization of the STED beam. The polarization of the excitation beam is in all measurements set parallel to the director. Depletion ”ξ” denotes the ratio of depleted and non-depleted intensities.
Fig. 8
Fig. 8 Controlled shortening of the emitted fluorescence by applying a time-delayed STED pulse. In (a), the STED pulse was delayed for ∼6 ns. Note a sudden decrease of the fluorescence to zero, after a 150 ps STED pulse was applied. The delay time of the STED pulse was gradually shortened in (b)–(e), which resulted in shortening of the emitted fluorescent light. The delay time was roughly estimated from the optical path measurement with uncertainty of 50 ps. The red dotted line shows spontaneous fluorescence when no STED pulse is applied.
Fig. 9
Fig. 9 Controlling the time-delay and width of two consecutive fluorescence pulses by STED. (a) Fluorescence from the Nile Red stained 8CB sample, when two 150 ps excitation pulses were applied, separated in time by 2.9 ns. Synchronously with that, two 150 ps STED pulses were applied, but each with a delay of 1.0 ns. The red dotted line shows non-depleted fluorescence emission. Time traces of the excitation and STED pulses are shown in (c). (b) The same as in (a), but in this case the delay between the excitation pulses is longer, 3.6 ns, and the delay between the excitation and STED pulse was now 1.9 ns. Note that the pulses of the emitted fluorescent light are longer compared to (a). (d) Time traces of the excitation and STED pulses for the (b) case.

Metrics