Abstract

We report on theoretical and experimental investigations of gain dynamics in Raman fiber lasers in the frequency range of 1 Hz-1 MHz. An analytical solution of the problem is due to the nonlinear nature of the Raman effect not feasible. Thus, we used a numerical simulation to gain general insights. Experimentally and numerically obtained results for a Raman fiber laser emitting at 1180 nm show good qualitative agreement. We also present a potential physical interpretation of the observed dynamical properties. In addition, we report on an experimental proof-of-principle of a passive pump-to-Stokes RIN suppression scheme for the main Stokes order in cascaded Raman fiber lasers utilizing an additional parasitic Stokes order. Again, results from numerical and experimental studies of a cascaded Raman fiber laser at 1180 nm and 1240 nm show good agreement and confirm the passive pump-to-Stokes RIN suppression at 1180 nm. The dependencies between the resonator design and the parameters of the noise suppression are investigated. In addition, it is shown that the scheme can also be applied to cascaded Raman fiber lasers with more then two Stokes shifts. This opens the possibility to design for example low-noise Raman fiber lasers at 1480 nm to pump low-noise Er3+ doped fiber amplifiers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber widely tunable Raman fiber laser with controlled output spectrum

S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A .A. Vlasov
Opt. Express 15(13) 8438-8443 (2007)

Tapered fiber based high power random laser

Hanwei Zhang, Xueyuan Du, Pu Zhou, Xiaolin Wang, and Xiaojun Xu
Opt. Express 24(8) 9112-9118 (2016)

Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects

Jiangming Xu, Zhaokai Lou, Jun Ye, Jian Wu, Jinyong Leng, Hu Xiao, Hanwei Zhang, and Pu Zhou
Opt. Express 25(5) 5609-5617 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17, 23678–23683 (2011).
    [Crossref]
  2. L. Zhang, H. Jiang, S. Cui, and Y. Feng, “Integrated Ytterbium-Raman fiber amplifier,” Opt. Lett. 39, 1933–1936 (2014).
    [Crossref] [PubMed]
  3. L. R. Taylor, Y. Feng, and D. B. Calia, “50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18, 8540–8555 (2010).
    [Crossref] [PubMed]
  4. L. Zhang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Power scaling of Raman fiber amplifier based source for laser guide star,” in Advanced Solid-State Lasers Congress, P. McManamon, P. Watson, and O. Steinvall, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.38.
  5. L. Zhang, H. Jiang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N.7.
  6. H. Martins, M. B. Marques, and O. Frazao, “300 km-ultralong Raman fiber lasers using a distributed mirror for sensing applications,” Opt. Express 19, 18149–18154 (2011).
    [Crossref] [PubMed]
  7. J. W. Nicholson, “High-power continuous wave Erbium-doped fiber laser pumped by a 1480-nm Raman fiber laser,” Proc. SPIE8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370K.
  8. S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
    [Crossref]
  9. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett. 35, 3069–3071 (2010).
    [Crossref] [PubMed]
  10. V. R. Supradeepa, J. W. Nicholson, C. E. Headley, Y. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370J
  11. V. R. Supradeepa, J. W. Nichsolson, C. E. Headley, M. F. Yan, B. Palsdottir, and D. Jakobsen, “A high efficiency architecture for cascaded Raman fiber lasers,” Opt. Express 21, 7148–7155 (2013).
    [Crossref] [PubMed]
  12. V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 m cascaded Raman fiber lasers,” Opt. Lett. 38, 2538–2541 (2013).
    [Crossref] [PubMed]
  13. M. Punturo and et al., “The third generation of gravitational wave observatories and their science reach,” Class. Quantum Grav. 27, 084007 (2010).
    [Crossref]
  14. S. Novak and A. Moesle, “Analytic model for gain modulation in EDFAs,” J. Lightwave Technol. 20, 975–985 (2002).
    [Crossref]
  15. H. Tuennermann, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express 20(12), 13539–13550 (2012).
    [Crossref]
  16. M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers,” accepted for publication in Optics Express.
  17. G. Sun, D. Hwang, and Y. Chung, “Stabilization of the output power from a Raman fiber laser by generated-amplified spontaneous emission,” Laser Phys. 18(10), 1188–1191 (2008).
    [Crossref]
  18. G. Sun, A. Lin, D. Hwang, W.-T. Han, and Y. Chung, “Gain-clamped discrete Raman amplifier with suppressed low-frequency relative intensity noise pump-to-signal transfer,” Laser Phys. 18(10), 1192–1195 (2008).
    [Crossref]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  20. S. D. Jackson and P. H. Muir, “Theory and numerical simulation of nth-order cascaded Raman fiber lasers,” J. Opt. Soc. Am. B 18, 1297–1306 (2001).
    [Crossref]
  21. L. F. Shampine, P. H. Muir, and H. Xu, “A user-friendly Fortran BVP solver,” J. Numer. Anal. Indust. Appl. Math. 1, 201–217 (2006).
  22. J. Salvatier, “scikits.bvp solver 1.1,” http://pythonhosted.org/scikits.bvp_solver .
  23. M. Steinke, E. Schreiber, D. Kracht, J. Neumann, and P. Wessels, “Development of a cascaded Raman fiber laser with 6.5 W output power at 1480 nm supported by detailed numerical simulations,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ-P.16.
  24. M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260, 656–661 (2006).
    [Crossref]
  25. A. E. Siegman, Lasers (University Science Books, 1986).
  26. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24, 1729–1738 (2007).
    [Crossref]
  27. G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
    [Crossref]

2014 (1)

2013 (2)

2012 (1)

2011 (2)

2010 (3)

2009 (1)

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

2008 (2)

G. Sun, D. Hwang, and Y. Chung, “Stabilization of the output power from a Raman fiber laser by generated-amplified spontaneous emission,” Laser Phys. 18(10), 1188–1191 (2008).
[Crossref]

G. Sun, A. Lin, D. Hwang, W.-T. Han, and Y. Chung, “Gain-clamped discrete Raman amplifier with suppressed low-frequency relative intensity noise pump-to-signal transfer,” Laser Phys. 18(10), 1192–1195 (2008).
[Crossref]

2007 (1)

2006 (2)

L. F. Shampine, P. H. Muir, and H. Xu, “A user-friendly Fortran BVP solver,” J. Numer. Anal. Indust. Appl. Math. 1, 201–217 (2006).

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260, 656–661 (2006).
[Crossref]

2002 (1)

2001 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Alouini, M.

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

Babin, S. A.

Baili, G.

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

Becke, P. C.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

Bretenaker, F.

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

Brinkmeyer, E.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260, 656–661 (2006).
[Crossref]

Calia, D. B.

Chen, L.

L. Zhang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Power scaling of Raman fiber amplifier based source for laser guide star,” in Advanced Solid-State Lasers Congress, P. McManamon, P. Watson, and O. Steinvall, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.38.

L. Zhang, H. Jiang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N.7.

Cheung, W. Y.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

Chung, Y.

G. Sun, D. Hwang, and Y. Chung, “Stabilization of the output power from a Raman fiber laser by generated-amplified spontaneous emission,” Laser Phys. 18(10), 1188–1191 (2008).
[Crossref]

G. Sun, A. Lin, D. Hwang, W.-T. Han, and Y. Chung, “Gain-clamped discrete Raman amplifier with suppressed low-frequency relative intensity noise pump-to-signal transfer,” Laser Phys. 18(10), 1192–1195 (2008).
[Crossref]

Churkin, D. V.

Cierullies, S.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260, 656–661 (2006).
[Crossref]

Cui, S.

L. Zhang, H. Jiang, S. Cui, and Y. Feng, “Integrated Ytterbium-Raman fiber amplifier,” Opt. Lett. 39, 1933–1936 (2014).
[Crossref] [PubMed]

L. Zhang, H. Jiang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N.7.

L. Zhang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Power scaling of Raman fiber amplifier based source for laser guide star,” in Advanced Solid-State Lasers Congress, P. McManamon, P. Watson, and O. Steinvall, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.38.

DiGiovanni, D. J.

DiMarcello, F.

Dolfi, D.

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

Erdogan, T.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

Feng, Y.

L. Zhang, H. Jiang, S. Cui, and Y. Feng, “Integrated Ytterbium-Raman fiber amplifier,” Opt. Lett. 39, 1933–1936 (2014).
[Crossref] [PubMed]

Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17, 23678–23683 (2011).
[Crossref]

L. R. Taylor, Y. Feng, and D. B. Calia, “50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18, 8540–8555 (2010).
[Crossref] [PubMed]

L. Zhang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Power scaling of Raman fiber amplifier based source for laser guide star,” in Advanced Solid-State Lasers Congress, P. McManamon, P. Watson, and O. Steinvall, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.38.

L. Zhang, H. Jiang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N.7.

Fleming, J.

Frazao, O.

Grubb, S. G.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

Han, W.-T.

G. Sun, A. Lin, D. Hwang, W.-T. Han, and Y. Chung, “Gain-clamped discrete Raman amplifier with suppressed low-frequency relative intensity noise pump-to-signal transfer,” Laser Phys. 18(10), 1192–1195 (2008).
[Crossref]

Headley, C.

Headley, C. E.

V. R. Supradeepa, J. W. Nichsolson, C. E. Headley, M. F. Yan, B. Palsdottir, and D. Jakobsen, “A high efficiency architecture for cascaded Raman fiber lasers,” Opt. Express 21, 7148–7155 (2013).
[Crossref] [PubMed]

V. R. Supradeepa, J. W. Nicholson, C. E. Headley, Y. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370J

Hu, J.

L. Zhang, H. Jiang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N.7.

L. Zhang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Power scaling of Raman fiber amplifier based source for laser guide star,” in Advanced Solid-State Lasers Congress, P. McManamon, P. Watson, and O. Steinvall, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.38.

Hwang, D.

G. Sun, A. Lin, D. Hwang, W.-T. Han, and Y. Chung, “Gain-clamped discrete Raman amplifier with suppressed low-frequency relative intensity noise pump-to-signal transfer,” Laser Phys. 18(10), 1192–1195 (2008).
[Crossref]

G. Sun, D. Hwang, and Y. Chung, “Stabilization of the output power from a Raman fiber laser by generated-amplified spontaneous emission,” Laser Phys. 18(10), 1188–1191 (2008).
[Crossref]

Ismagulov, A. E.

Jackson, S. D.

Jakobsen, D.

V. R. Supradeepa, J. W. Nichsolson, C. E. Headley, M. F. Yan, B. Palsdottir, and D. Jakobsen, “A high efficiency architecture for cascaded Raman fiber lasers,” Opt. Express 21, 7148–7155 (2013).
[Crossref] [PubMed]

V. R. Supradeepa, J. W. Nicholson, C. E. Headley, Y. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370J

Jiang, H.

L. Zhang, H. Jiang, S. Cui, and Y. Feng, “Integrated Ytterbium-Raman fiber amplifier,” Opt. Lett. 39, 1933–1936 (2014).
[Crossref] [PubMed]

L. Zhang, H. Jiang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N.7.

Kablukov, S. I.

Kosinski, S. G.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

Kracht, D.

H. Tuennermann, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express 20(12), 13539–13550 (2012).
[Crossref]

M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers,” accepted for publication in Optics Express.

M. Steinke, E. Schreiber, D. Kracht, J. Neumann, and P. Wessels, “Development of a cascaded Raman fiber laser with 6.5 W output power at 1480 nm supported by detailed numerical simulations,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ-P.16.

Krause, M.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260, 656–661 (2006).
[Crossref]

Lee, Y.

V. R. Supradeepa, J. W. Nicholson, C. E. Headley, Y. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370J

Lemaire, P. J.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

Lin, A.

G. Sun, A. Lin, D. Hwang, W.-T. Han, and Y. Chung, “Gain-clamped discrete Raman amplifier with suppressed low-frequency relative intensity noise pump-to-signal transfer,” Laser Phys. 18(10), 1192–1195 (2008).
[Crossref]

Malherbe, T.

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

Marques, M. B.

Martins, H.

Miller, A. E.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

Mizrahi, V.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

Moesle, A.

Monberg, E.

Muir, P. H.

L. F. Shampine, P. H. Muir, and H. Xu, “A user-friendly Fortran BVP solver,” J. Numer. Anal. Indust. Appl. Math. 1, 201–217 (2006).

S. D. Jackson and P. H. Muir, “Theory and numerical simulation of nth-order cascaded Raman fiber lasers,” J. Opt. Soc. Am. B 18, 1297–1306 (2001).
[Crossref]

Neumann, J.

H. Tuennermann, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express 20(12), 13539–13550 (2012).
[Crossref]

M. Steinke, E. Schreiber, D. Kracht, J. Neumann, and P. Wessels, “Development of a cascaded Raman fiber laser with 6.5 W output power at 1480 nm supported by detailed numerical simulations,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ-P.16.

M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers,” accepted for publication in Optics Express.

Nicholson, J. W.

V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 m cascaded Raman fiber lasers,” Opt. Lett. 38, 2538–2541 (2013).
[Crossref] [PubMed]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett. 35, 3069–3071 (2010).
[Crossref] [PubMed]

V. R. Supradeepa, J. W. Nicholson, C. E. Headley, Y. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370J

J. W. Nicholson, “High-power continuous wave Erbium-doped fiber laser pumped by a 1480-nm Raman fiber laser,” Proc. SPIE8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370K.

Nichsolson, J. W.

Novak, S.

Nykolak, G.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

Palsdottir, B.

V. R. Supradeepa, J. W. Nichsolson, C. E. Headley, M. F. Yan, B. Palsdottir, and D. Jakobsen, “A high efficiency architecture for cascaded Raman fiber lasers,” Opt. Express 21, 7148–7155 (2013).
[Crossref] [PubMed]

V. R. Supradeepa, J. W. Nicholson, C. E. Headley, Y. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370J

Podivilov, E. V.

Punturo, M.

M. Punturo and et al., “The third generation of gravitational wave observatories and their science reach,” Class. Quantum Grav. 27, 084007 (2010).
[Crossref]

Reed, W. A.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

Renner, H.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260, 656–661 (2006).
[Crossref]

Sagnes, I.

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

Schreiber, E.

M. Steinke, E. Schreiber, D. Kracht, J. Neumann, and P. Wessels, “Development of a cascaded Raman fiber laser with 6.5 W output power at 1480 nm supported by detailed numerical simulations,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ-P.16.

Shampine, L. F.

L. F. Shampine, P. H. Muir, and H. Xu, “A user-friendly Fortran BVP solver,” J. Numer. Anal. Indust. Appl. Math. 1, 201–217 (2006).

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Steinke, M.

M. Steinke, E. Schreiber, D. Kracht, J. Neumann, and P. Wessels, “Development of a cascaded Raman fiber laser with 6.5 W output power at 1480 nm supported by detailed numerical simulations,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ-P.16.

M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers,” accepted for publication in Optics Express.

Strasser, T.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

Sun, G.

G. Sun, D. Hwang, and Y. Chung, “Stabilization of the output power from a Raman fiber laser by generated-amplified spontaneous emission,” Laser Phys. 18(10), 1188–1191 (2008).
[Crossref]

G. Sun, A. Lin, D. Hwang, W.-T. Han, and Y. Chung, “Gain-clamped discrete Raman amplifier with suppressed low-frequency relative intensity noise pump-to-signal transfer,” Laser Phys. 18(10), 1192–1195 (2008).
[Crossref]

Supradeepa, V. R.

Taunay, T.

Taylor, L. R.

Tuennermann, H.

Wessels, P.

H. Tuennermann, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express 20(12), 13539–13550 (2012).
[Crossref]

M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers,” accepted for publication in Optics Express.

M. Steinke, E. Schreiber, D. Kracht, J. Neumann, and P. Wessels, “Development of a cascaded Raman fiber laser with 6.5 W output power at 1480 nm supported by detailed numerical simulations,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ-P.16.

Wisk, P.

Xu, H.

L. F. Shampine, P. H. Muir, and H. Xu, “A user-friendly Fortran BVP solver,” J. Numer. Anal. Indust. Appl. Math. 1, 201–217 (2006).

Yan, M. F.

Zhang, L.

L. Zhang, H. Jiang, S. Cui, and Y. Feng, “Integrated Ytterbium-Raman fiber amplifier,” Opt. Lett. 39, 1933–1936 (2014).
[Crossref] [PubMed]

L. Zhang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Power scaling of Raman fiber amplifier based source for laser guide star,” in Advanced Solid-State Lasers Congress, P. McManamon, P. Watson, and O. Steinvall, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.38.

L. Zhang, H. Jiang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N.7.

Class. Quantum Grav. (1)

M. Punturo and et al., “The third generation of gravitational wave observatories and their science reach,” Class. Quantum Grav. 27, 084007 (2010).
[Crossref]

Europhys. Lett. (1)

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87, 44005 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Numer. Anal. Indust. Appl. Math. (1)

L. F. Shampine, P. H. Muir, and H. Xu, “A user-friendly Fortran BVP solver,” J. Numer. Anal. Indust. Appl. Math. 1, 201–217 (2006).

J. Opt. Soc. Am. B (2)

Laser Phys. (2)

G. Sun, D. Hwang, and Y. Chung, “Stabilization of the output power from a Raman fiber laser by generated-amplified spontaneous emission,” Laser Phys. 18(10), 1188–1191 (2008).
[Crossref]

G. Sun, A. Lin, D. Hwang, W.-T. Han, and Y. Chung, “Gain-clamped discrete Raman amplifier with suppressed low-frequency relative intensity noise pump-to-signal transfer,” Laser Phys. 18(10), 1192–1195 (2008).
[Crossref]

Opt. Commun. (1)

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260, 656–661 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Other (10)

A. E. Siegman, Lasers (University Science Books, 1986).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

J. Salvatier, “scikits.bvp solver 1.1,” http://pythonhosted.org/scikits.bvp_solver .

M. Steinke, E. Schreiber, D. Kracht, J. Neumann, and P. Wessels, “Development of a cascaded Raman fiber laser with 6.5 W output power at 1480 nm supported by detailed numerical simulations,” in 2013 Conference on Lasers and Electro-Optics - International Quantum Electronics Conference, (Optical Society of America, 2013), paper CJ-P.16.

L. Zhang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Power scaling of Raman fiber amplifier based source for laser guide star,” in Advanced Solid-State Lasers Congress, P. McManamon, P. Watson, and O. Steinvall, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.38.

L. Zhang, H. Jiang, S. Cui, J. Hu, L. Chen, and Y. Feng, “Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N.7.

J. W. Nicholson, “High-power continuous wave Erbium-doped fiber laser pumped by a 1480-nm Raman fiber laser,” Proc. SPIE8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370K.

S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becke, “High-power 1.48 μ m cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper SaA4.
[Crossref]

V. R. Supradeepa, J. W. Nicholson, C. E. Headley, Y. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE8237, Fiber Lasers IX: Technology, Systems, and Applications, 82370J

M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers,” accepted for publication in Optics Express.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 General setup of a cascaded Raman fiber laser. HR FBG: highly reflective FBG, OC FBG: out-coupling FBG.
Fig. 2
Fig. 2 Schematic overview of the experimental setup to measure the transfer functions of a RFL at 1180 nm.
Fig. 3
Fig. 3 Measured transfer functions (not normalized) of the 1180 nm RFL for different output power levels: Magnitude (a) and phase (b).
Fig. 4
Fig. 4 Cut-off frequency of a RFL at 1180 nm in dependency of the output power for a varying reflectivity of the OC FBG (a) and for a varying Raman fiber length (b).
Fig. 5
Fig. 5 (a): Simulated slope of a CRFL at 1180 nm with an additional parasitic Stokes order at 1240 nm. (b): Simulated transfer functions of the main Stokes order at 1180 nm below and above the threshold of the parasitic Stokes order.
Fig. 6
Fig. 6 Experimental setup used to confirm the passive pump-to-Stokes RIN suppression in CRFLs utilizing an additional parasitic Stokes order.
Fig. 7
Fig. 7 (a): Measured slope of a CRFL at 1180 nm with an additional parasitic Stokes order at 1240 nm. (b): Measured transfer functions (not normalized) of the main Stokes order at 1180 nm below and above the threshold of the parasitic Stokes order.
Fig. 8
Fig. 8 (a): Noise suppression cut-off frequency fα for a varying fiber length and for a varying reflectivity of the OC FGB of the parasitic Stokes order. (b): Noise suppression cut-off frequency fα for a varying reflectivity of the OC FBG of the main Stokes order (b).
Fig. 9
Fig. 9 (a): Simulated transfer functions of the parasitic Stokes order at 1240 nm. (b): Corresponding cut-off frequencies (see text for further explanation).
Fig. 10
Fig. 10 Simulated slope of a CRFL at 1480 nm with an additional parasitic Stokes order at 1580 nm. (b): Simulated transfer functions of the main Stokes order at 1480 nm below and above the threshold of the parasitic Stokes order.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

d P 0 d z + 1 c 0 P 0 t = v 0 v 1 g o ( P 1 + + P 1 + 2 β 1 ) P 0 α 0 P 0 ± d P i ± d z + 1 c i P i ± t = v i v i + 1 g i ( P i + 1 + + P i + 1 + 2 β i + 1 ) P i ± α i P i ± + g i 1 ( P i 1 + + P i 1 ) ( P i ± + β i )
β i = ( 1 + η ) h v i B eff , i
η = 1 e h Δ v k b T 1
g i = λ α g α λ i A i .
A i = π 2 ( W i 2 + W i + 1 2 )
W i ( 0.65 + 1.619 V i 3 / 2 + 2.879 V i 6 ) r c
P 0 ( z = 0 , t ) = P pump ( t ) P i + ( z = 0 , t ) = R left , i P i ( z = 0 , t ) P i ( z = L , t ) = R right , i P i + ( z = L , t )
P pump ( t ) = P pump 0 ( 1 + δ e i ω t ) = P pump 0 ( z ) + p pump ( z , t )
P 0 ( z , t ) = P 0 0 ( z ) ( 1 + δ 0 e i ( ω t + ϕ 0 ) ) = P 0 0 ( z ) + p 0 ( z , t ) P i ± ( z , t ) = P i ± , 0 ( z ) ( 1 + δ i ± e i ( ω t + ϕ i ± ) ) = P i ± , 0 ( z ) + p i ± ( z , t )
d p 0 d z = ( v 0 v 1 g 0 ( P 1 + , 0 + P 1 , 0 + 2 β 1 ) α 0 i ω c 0 ) p 0 v 0 v 1 g 0 P 0 0 ( p i + 1 + + p i + 1 ) ± d p i ± d z = ( g i 1 ( P i 1 + , 0 + P i 1 , 0 ) v i v i + 1 g i ( P i + 1 + , 0 + P i + 1 , 0 + 2 β i + 1 ) α i i ω c i ) p i ± v i v i + 1 g i P i ± , 0 ( p i + 1 + + p i + 1 ) + g i 1 ( p i ± , 0 + β i ) ( p i 1 + + p i 1 ) .
p ˜ 0 ( z , ω ) = d t p 0 ( z , t ) e i ω t p ˜ i ± ( z , ω ) = d t p i ± ( z , t ) e i ω t
d p ˜ 0 d z = ( v 0 v 1 g 0 ( P 1 + , 0 + P 1 , 0 + 2 β 1 ) α 0 i ω c 0 ) p ˜ 0 v 0 v 1 g 0 P 0 0 ( p ˜ i + 1 + + p ˜ i + 1 ) ± d p ˜ i ± d z = ( g i 1 ( P i 1 + , 0 + P i 1 , 0 ) v i v i + 1 g i ( P i + 1 + , 0 + P i + 1 , 0 + 2 β i + 1 ) α i i ω c i ) p ˜ i ± v i v i + 1 g i P i ± , 0 ( p ˜ i + 1 + + p ˜ i + 1 ) + g i 1 ( p i ± , 0 + β i ) ( p ˜ i 1 + + p ˜ i 1 ) .
p ˜ 0 ( z = 0 , ω ) = p ˜ pump ( ω ) p ˜ i + ( z = 0 , ω ) = R left , i p ˜ i ( z = 0 , ω ) p ˜ i ( z = L , ω ) = R right , i p ˜ 1 + ( z = L , ω ) .
TF ( f ) = A ( f eff , 1 + i f ) ( f eff , 2 + i f )
TF ( f ) = A ( f real + i f imag + i f ) ( f real i f imag + i f )

Metrics