Abstract

A novel method for broadband imaging of using a diffractive photon sieves is proposed and experimentally demonstrated. Unlike conventional photon sieves imaging in which clear imaging is only valid at a single designed wavelength due to the strong wavelength-dependent nature of diffractive elements, broadband photon sieves imaging is implemented with wavefront coding of a simple cubic phase mask without complicated optical system to compensate large chromatic aberration. Experimental validation was performed using an UV-lithography fabricated photon sieves of a focal length of 500mm and a diameter of 50mm at designed wavelength 632.8nm and a diamond-turning fabricated cubic phase mask of a phase parameter α=20π. Results show that extension of the working bandwidth of the proposed photon sieves imaging system is at least 88 times that of a conventional one with almost the same optical resolution and much increased energy efficiency. The proposed method suggests a new concept of extending the applications of photon sieves to work in a broadband wavelength range with a simple method in contrast to conventionally work at a single wavelength only.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-large multi-region photon sieves

Zhifeng Chen, Chinhua Wang, Donglin Pu, Jin Hu, and Linsen Chen
Opt. Express 18(15) 16279-16288 (2010)

Fabrication of photon sieves by laser ablation and optical properties

Matthew N. Julian, David G. MacDonnell, and Mool C. Gupta
Opt. Express 25(25) 31528-31538 (2017)

Photon-sieve lithography

Rajesh Menon, Dario Gil, George Barbastathis, and Henry I. Smith
J. Opt. Soc. Am. A 22(2) 342-345 (2005)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Hyde, “Eyeglass. 1. Very large aperture diffractive telescopes,” Appl. Opt. 38(19), 4198–4212 (1999).
    [Crossref] [PubMed]
  2. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
    [Crossref] [PubMed]
  3. Q. Cao and J. Jahns, “Focusing analysis of the pinhole photon sieve: individual far-field model,” J. Opt. Soc. Am. A 19(12), 2387–2393 (2002).
    [Crossref] [PubMed]
  4. Q. Cao and J. Jahns, “Nonparaxial model for the focusing of high-numerical-aperture photon sieves,” J. Opt. Soc. Am. A 20(6), 1005–1012 (2003).
    [Crossref] [PubMed]
  5. G. Andersen, “Large optical photon sieve,” Opt. Lett. 30(22), 2976–2978 (2005).
    [Crossref] [PubMed]
  6. R. Menon, D. Gil, G. Barbastathis, and H. I. Smith, “Photon-sieve lithography,” J. Opt. Soc. Am. A 22(2), 342–345 (2005).
    [Crossref] [PubMed]
  7. Z. Chen, C. Wang, D. Pu, J. Hu, and L. Chen, “Ultra-large multi-region photon sieves,” Opt. Express 18(15), 16279–16288 (2010).
    [Crossref] [PubMed]
  8. C. Zhou, X. Dong, L. Shi, C. Wang, and C. Du, “Experimental study of a multiwavelength photon sieve designed by random-area-divided approach,” Appl. Opt. 48(8), 1619–1623 (2009).
    [Crossref] [PubMed]
  9. F. Giménez, J. A. Monsoriu, W. D. Furlan, and A. Pons, “Fractal photon sieve,” Opt. Express 14(25), 11958–11963 (2006).
    [Crossref] [PubMed]
  10. W. D. Furlan, G. Saavedra, and J. A. Monsoriu, “White-light imaging with fractal zone plates,” Opt. Lett. 32(15), 2109–2111 (2007).
    [Crossref] [PubMed]
  11. G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46(18), 3706–3708 (2007).
    [Crossref] [PubMed]
  12. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995).
    [Crossref] [PubMed]
  13. H. B. Wach, E. R. Dowski, and W. T. Cathey, “Control of chromatic focal shift through wave-front coding,” Appl. Opt. 37(23), 5359–5367 (1998).
    [Crossref] [PubMed]
  14. K. Kondo, Y. Ichioka, and T. Suzuki, “Image restoration by Wiener filtering in the presence of signal-dependent noise,” Appl. Opt. 16(9), 2554–2558 (1977).
    [Crossref] [PubMed]
  15. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41(29), 6080–6092 (2002).
    [Crossref] [PubMed]
  16. S. H. Lee, N. C. Park, and Y. P. Park, “Breaking diffraction limit of a small f-number compact camera using wavefront coding,” Opt. Express 16(18), 13569–13578 (2008).
    [Crossref] [PubMed]
  17. F. Diaz, F. Goudail, B. Loiseaux, and J.-P. Huignard, “Increase in depth of field taking into account deconvolution by optimization of pupil mask,” Opt. Lett. 34(19), 2970–2972 (2009).
    [Crossref] [PubMed]

2010 (1)

2009 (2)

2008 (1)

2007 (2)

2006 (1)

2005 (2)

2003 (1)

2002 (2)

2001 (1)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

1999 (1)

1998 (1)

1995 (1)

1977 (1)

Adelung, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Andersen, G.

Barbastathis, G.

Berndt, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Cao, Q.

Cathey, W. T.

Chen, L.

Chen, Z.

Diaz, F.

Dong, X.

Dowski, E. R.

Du, C.

Furlan, W. D.

Gil, D.

Giménez, F.

Goudail, F.

Harm, S.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Hu, J.

Huignard, J.-P.

Hyde, R. A.

Ichioka, Y.

Jahns, J.

Johnson, R. L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Kipp, L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Kondo, K.

Lee, S. H.

Loiseaux, B.

Menon, R.

Monsoriu, J. A.

Park, N. C.

Park, Y. P.

Pons, A.

Pu, D.

Saavedra, G.

Seemann, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Shi, L.

Skibowski, M.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Smith, H. I.

Suzuki, T.

Tullson, D.

Wach, H. B.

Wang, C.

Zhou, C.

Appl. Opt. (7)

J. Opt. Soc. Am. A (3)

Nature (1)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of a wavefront coded broadband photon sieves imaging system.

Fig. 2
Fig. 2

Schematics of (a): a photon sieves and (b): a cubic phase mask with a phase parameter α=20π .

Fig. 3
Fig. 3

The PSF of a photon sieves imaging system with and without wavefront coding at different incident wavelengths from λ = 625.8 to 639.8nm. (a) conventional photon sieves imaging (without wavefront coding); (b) wavefront coded photon sieves imaging with a cubic phase parameter α=20π .

Fig. 4
Fig. 4

MTF of a conventional photon sieves imaging system and a wavefront coded broadband photon sieves imaging system with a cubic phase mask of phase parameter α=20π at different incident wavelengths from λ = 625.8 to 639.8nm.

Fig. 5
Fig. 5

The simulated imaging behavior of a conventional photon sieves at different incident wavelengths from λ = 625.8 to 639.8nm.

Fig. 6
Fig. 6

The intermediate wavefront coded blur images of the broadband photon sieves image system at different wavelengths from λ = 625.8 to 639.8nm.

Fig. 7
Fig. 7

The restored images of the wavefront coded broadband photon sieves system at different wavelengths from λ = 625.8 to 639.8nm.

Fig. 8
Fig. 8

Experimental setup of a photon sieves imaging system at designed wavelength 632.8nm.

Fig. 9
Fig. 9

(a) PSF of the photon sieves at 632.8nm; (b) Image produced by the conventional photon sieves; (c) Magnified image from the central region of (b). Other parameters are: focal length = 500mm, diameter = 50mm, and working wavelength 632.8nm.

Fig. 10
Fig. 10

(a) Experimental setup of a wavefront coded broadband photon sieves imaging system; and (b) Transmission curve of a bandpass filter (central wavelength 632.8nm, FWHM 10nm).

Fig. 11
Fig. 11

PSF and image measurement results of the photon sieves imaging system without wavefront coding under a broadband incident illumination. (a) PSF measurement; (b) imaging result; and (c) magnified image from the central region of (b). Incident illumination is centered at 632.8nm with a FWHM bandwidth of 10nm.

Fig. 12
Fig. 12

(a) Measured PSF of the wavefront coded photon sieves system; (b) Intermediate blurred image produced by the broadband photon sieves system; (c) Restored image of the broadband photon sieves system; (d) Magnified image from the central region of (c). The incident FWHM bandwidth is 10nm centered at 632.8nm.

Fig. 13
Fig. 13

MTF curves of the conventional photon sieves imaging at designed single wavelength (black line) and broadband source (red line), as well as the wavefront coding imaging (blue line) with broadband source.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U( X,Y )= m=1 M U m ( X,Y ) = m=1 M k A m a m 2 q H 2 exp[ jk( L m +H ) ]Jinc( k a m H ρ )
t( x,y )=exp( jα x 3 + y 3 R 3 ) =exp( j 2π λ ξ( n1 ) x 3 + y 3 R 3 ), x 2 + y 2 R 2
E( x,y )= E 0 ( x,y )t( x,y ) = E 0 ( x,y )exp( j 2π λ ξ( n1 ) x 3 + y 3 R 3 )
L m ( x,y )=ξ( n1 ) x 3 + y 3 R 3
g m =( L x )| x m , y m = 3ξ( n1 ) R 3 x m 3
h m =( L y )| x m , y m = 3ξ( n1 ) R 3 y m 3
I= | U( X,Y ) | 2

Metrics