Abstract

A fiber-optic refractive index (RI) sensor based on a π-phase-shifted fiber-Bragg-grating (πFBG) inscribed on a side-hole fiber is presented. The reflection spectrum of the πFBG features two narrow notches associated with the two polarization modes and the spectral spacing of the notches is used for high-sensitivity RI sensing with little temperature cross-sensitivity. The side-hole fiber maintains its outer diameter and mechanical strength. The side-hole fiber is also naturally integrated into a microfluidic system for convenient sample delivery and reduced sample amount. A novel demodulation method based on laser frequency modulation to enhance the sensor dynamic range is proposed and demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber

O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik
Opt. Lett. 34(1) 76-78 (2009)

In-line open-cavity Fabry–Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing

Chuang Wu, Zhengyong Liu, A. Ping Zhang, Bai-Ou Guan, and Hwa-Yaw Tam
Opt. Express 22(18) 21757-21766 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17(1), 51–62 (1998).
    [Crossref]
  2. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
    [Crossref]
  3. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
    [Crossref] [PubMed]
  4. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34(1), 76–78 (2009).
    [Crossref] [PubMed]
  5. M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
    [Crossref] [PubMed]
  6. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
    [Crossref]
  7. H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators, B 150(1), 226–229 (2010).
    [Crossref]
  8. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
    [Crossref] [PubMed]
  9. J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
    [Crossref] [PubMed]
  10. Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Bragg gratings in rectangular microfiber for temperature independent refractive index sensing,” Opt. Lett. 37(13), 2649–2651 (2012).
    [Crossref] [PubMed]
  11. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  12. K. O. A. U. C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (John Wiley & Sons, 2012).
  13. H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
    [Crossref]
  14. Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
    [Crossref]
  15. J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, and M. Han, “Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure,” Opt. Lett. 37(22), 4672–4674 (2012).
    [Crossref] [PubMed]
  16. N. Zhong, Q. Liao, X. Zhu, Y. Wang, and R. Chen, “High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation,” Appl. Opt. 52(7), 1432–1440 (2013).
    [Crossref] [PubMed]
  17. Q. Zhang, N. J. Ianno, and M. Han, “Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating,” Sensors (Basel) 13(7), 8827–8834 (2013).
    [Crossref] [PubMed]
  18. Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
    [Crossref]
  19. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5(1), 15–17 (1980).
    [Crossref] [PubMed]
  20. R. Slavík, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators, B 54(1–2), 74–79 (1999).
    [Crossref]
  21. A. Suzuki, J. Kondoh, Y. Matsui, S. Shiokawa, and K. Suzuki, “Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes,” Sens. Actuators, B 106(1), 383–387 (2005).
    [Crossref]
  22. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
    [Crossref]
  23. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  24. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
    [Crossref] [PubMed]
  25. P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators, B 99(1), 6–13 (2004).
    [Crossref]
  26. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [Crossref] [PubMed]
  27. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
    [Crossref] [PubMed]
  28. Z. H. He, Y. N. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
    [Crossref]
  29. F. Tian, Z. He, and H. Du, “Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media,” Opt. Lett. 37(3), 380–382 (2012).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

N. Zhong, Q. Liao, X. Zhu, Y. Wang, and R. Chen, “High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation,” Appl. Opt. 52(7), 1432–1440 (2013).
[Crossref] [PubMed]

Q. Zhang, N. J. Ianno, and M. Han, “Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating,” Sensors (Basel) 13(7), 8827–8834 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (1)

2010 (5)

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators, B 150(1), 226–229 (2010).
[Crossref]

M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
[Crossref] [PubMed]

X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
[Crossref] [PubMed]

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

2009 (1)

2008 (1)

Z. H. He, Y. N. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[Crossref]

2007 (2)

2006 (2)

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
[Crossref] [PubMed]

2005 (2)

A. Suzuki, J. Kondoh, Y. Matsui, S. Shiokawa, and K. Suzuki, “Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes,” Sens. Actuators, B 106(1), 383–387 (2005).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

2004 (3)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators, B 99(1), 6–13 (2004).
[Crossref]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[Crossref] [PubMed]

1999 (1)

R. Slavík, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators, B 54(1–2), 74–79 (1999).
[Crossref]

1998 (1)

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17(1), 51–62 (1998).
[Crossref]

1980 (1)

Ahlfeldt, H.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17(1), 51–62 (1998).
[Crossref]

Aldridge, J. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Anthes-Washburn, M.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Asseh, A.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17(1), 51–62 (1998).
[Crossref]

Baets, R.

Bang, O.

Baptista, J. M.

Barrios, C. A.

Bartolozzi, I.

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Bienstman, P.

Bjorklund, G. C.

Casquel, R.

Chbouki, N.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Chen, R.

Chow, E.

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Chu, S.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Ctyroky, J.

R. Slavík, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators, B 54(1–2), 74–79 (1999).
[Crossref]

Cunningham, B. T.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators, B 99(1), 6–13 (2004).
[Crossref]

Cusano, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

De Vos, K.

Desai, T. A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Du, H.

F. Tian, Z. He, and H. Du, “Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media,” Opt. Lett. 37(3), 380–382 (2012).
[Crossref] [PubMed]

Z. H. He, Y. N. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[Crossref]

Dufva, M.

Edwall, G.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17(1), 51–62 (1998).
[Crossref]

Fang, X.

Fink, T.

J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, and M. Han, “Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure,” Opt. Lett. 37(22), 4672–4674 (2012).
[Crossref] [PubMed]

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Frazão, O.

Gao, S.

Gerstenmaier, J.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators, B 99(1), 6–13 (2004).
[Crossref]

Gill, D.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Girolami, G.

Goldberg, B. B.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Griol, A.

Grot, A.

Guan, B. O.

Guo, F.

Guo, Z. X.

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Gylfason, K. B.

Han, M.

Q. Zhang, N. J. Ianno, and M. Han, “Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating,” Sensors (Basel) 13(7), 8827–8834 (2013).
[Crossref] [PubMed]

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, and M. Han, “Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure,” Opt. Lett. 37(22), 4672–4674 (2012).
[Crossref] [PubMed]

M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
[Crossref] [PubMed]

He, Z.

He, Z. H.

Z. H. He, Y. N. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[Crossref]

Henschel, H.

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

Hoeffgen, S. K.

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

Høiby, P. E.

Holgado, M.

Homola, J.

R. Slavík, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators, B 54(1–2), 74–79 (1999).
[Crossref]

Hryniewicz, J.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Huang, X. G.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators, B 150(1), 226–229 (2010).
[Crossref]

Huang, Y.

Iadicicco, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Ianno, N. J.

Q. Zhang, N. J. Ianno, and M. Han, “Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating,” Sensors (Basel) 13(7), 8827–8834 (2013).
[Crossref] [PubMed]

Jensen, J. B.

Jin, L.

King, O.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Kondoh, J.

A. Suzuki, J. Kondoh, Y. Matsui, S. Shiokawa, and K. Suzuki, “Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes,” Sens. Actuators, B 106(1), 383–387 (2005).
[Crossref]

Kuhnhenn, J.

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Li, H.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, and M. Han, “Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure,” Opt. Lett. 37(22), 4672–4674 (2012).
[Crossref] [PubMed]

Li, J.

Li, P. Y.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators, B 99(1), 6–13 (2004).
[Crossref]

Liao, C. R.

Liao, Q.

Lin, B.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators, B 99(1), 6–13 (2004).
[Crossref]

Little, B. E.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Liu, N.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Lu, Y.

Ma, Q. L.

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Martynkien, T.

Matsui, Y.

A. Suzuki, J. Kondoh, Y. Matsui, S. Shiokawa, and K. Suzuki, “Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes,” Sens. Actuators, B 106(1), 383–387 (2005).
[Crossref]

Meng, H. Y.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators, B 150(1), 226–229 (2010).
[Crossref]

Mirkarimi, L. W.

Pedersen, L. H.

Peng, W.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, and M. Han, “Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure,” Opt. Lett. 37(22), 4672–4674 (2012).
[Crossref] [PubMed]

Popat, K. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Ran, Y.

Rindorf, L.

Rossmann, T.

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Sahlgren, B.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17(1), 51–62 (1998).
[Crossref]

Saini, S. S.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Sánchez, B.

Sandgren, S.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17(1), 51–62 (1998).
[Crossref]

Santos, J. L.

Schacht, E.

Shen, W.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators, B 150(1), 226–229 (2010).
[Crossref]

Shiokawa, S.

A. Suzuki, J. Kondoh, Y. Matsui, S. Shiokawa, and K. Suzuki, “Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes,” Sens. Actuators, B 106(1), 383–387 (2005).
[Crossref]

Sigalas, M.

Slavík, R.

R. Slavík, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators, B 54(1–2), 74–79 (1999).
[Crossref]

Sohlström, H.

Stubbe, R.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17(1), 51–62 (1998).
[Crossref]

Sun, L. P.

Suzuki, A.

A. Suzuki, J. Kondoh, Y. Matsui, S. Shiokawa, and K. Suzuki, “Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes,” Sens. Actuators, B 106(1), 383–387 (2005).
[Crossref]

Suzuki, K.

A. Suzuki, J. Kondoh, Y. Matsui, S. Shiokawa, and K. Suzuki, “Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes,” Sens. Actuators, B 106(1), 383–387 (2005).
[Crossref]

Tan, C. H.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators, B 150(1), 226–229 (2010).
[Crossref]

Tan, Y. N.

Tian, F.

Tian, J.

Unlu, M. S.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Urbanczyk, W.

Van, V.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Wang, D. N.

Wang, H.

Wang, Y.

Weinand, U.

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

Wojcik, J.

Yalcin, A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Zhang, G. B.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators, B 150(1), 226–229 (2010).
[Crossref]

Zhang, Q.

Q. Zhang, N. J. Ianno, and M. Han, “Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating,” Sensors (Basel) 13(7), 8827–8834 (2013).
[Crossref] [PubMed]

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, and M. Han, “Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure,” Opt. Lett. 37(22), 4672–4674 (2012).
[Crossref] [PubMed]

Zhong, N.

Zhu, X.

Zhu, Y. N.

Z. H. He, Y. N. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. H. He, Y. N. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[Crossref]

Fiber Integr. Opt. (1)

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17(1), 51–62 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (3)

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on pi-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

Meas. Sci. Technol. (1)

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (9)

F. Tian, Z. He, and H. Du, “Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media,” Opt. Lett. 37(3), 380–382 (2012).
[Crossref] [PubMed]

Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Bragg gratings in rectangular microfiber for temperature independent refractive index sensing,” Opt. Lett. 37(13), 2649–2651 (2012).
[Crossref] [PubMed]

J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, and M. Han, “Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure,” Opt. Lett. 37(22), 4672–4674 (2012).
[Crossref] [PubMed]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
[Crossref] [PubMed]

O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34(1), 76–78 (2009).
[Crossref] [PubMed]

M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
[Crossref] [PubMed]

X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
[Crossref] [PubMed]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5(1), 15–17 (1980).
[Crossref] [PubMed]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[Crossref] [PubMed]

Sens. Actuators, B (4)

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators, B 99(1), 6–13 (2004).
[Crossref]

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators, B 150(1), 226–229 (2010).
[Crossref]

R. Slavík, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators, B 54(1–2), 74–79 (1999).
[Crossref]

A. Suzuki, J. Kondoh, Y. Matsui, S. Shiokawa, and K. Suzuki, “Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes,” Sens. Actuators, B 106(1), 383–387 (2005).
[Crossref]

Sensors (Basel) (1)

Q. Zhang, N. J. Ianno, and M. Han, “Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating,” Sensors (Basel) 13(7), 8827–8834 (2013).
[Crossref] [PubMed]

Other (2)

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

K. O. A. U. C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematics of the RI sensor structure and (b) its reflection spectrum.
Fig. 2
Fig. 2 (a) Intensity distribution of the y-polarized mode when the side holes of the fiber are filled with RIs of 1 and 1.44; (b) simulated spectral notch separation vs. RI in the holes; (c) RI sensitivity vs. RI in the holes; and (d) the sensor response to temperature when the side holes of the fiber are filled with different RIs.
Fig. 3
Fig. 3 (a) Simulated amplitude distribution of the strain field due to a temperature increase from 20 to 1000°C and (b) relative spectral notch separation as a function of temperature due to the different TECs between fiber core and cladding.
Fig. 4
Fig. 4 (a) Cross-sectional view of the side-hole fiber before (left) and after (right) etching; (b) schematic of the sensor system with microfluidic capability; (c) spectrum of the πFBG before and after etching measured by OSA; (d) and (e): the two polarized spectral notches before (d) and after (e) etching.
Fig. 5
Fig. 5 (a) Schematic of the sensor demodulation system; (b) reflection spectrum of the sensor (blue, in logarithmic scale) and spectrum of the laser after FM (pink, in linear scale) measured by the OSA; and (c) spectrum of the two spectral notches shown on the oscilloscope.
Fig. 6
Fig. 6 Sensor responses to RI at RIs around 1.319 (a) and around 1.396 (b); spectral notch separation vs. time (c) and spectral notch separation vs. temperature (d).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δλ= n 3 ( p 11 p 12 )(   ε xx ε yy )Λ,
E( t )= E 0 exp[ i( ω 0 t+Msin ω m t ) ] = E 0 exp( i ω 0 t ) n= + J n ( M )exp( in ω m t )

Metrics