Abstract

Using multidot metal targets embedded in a diamond substrate, we created a single-grating Talbot–Lau interferometer and used it to capture two dimensional (2D) x-ray phase images. The ensemble of these targets constitutes a tiny virtual array of x-ray source and enables x-ray phase-contrast imaging with no source or absorption grating within a 1 m source-detector distance for 8 keV x-rays. We directly resolved a dot-pattern self-image of the phase grating with 6 µm pitch by using an x-ray image detector with 24 µm pixels and obtained 2D differential-phase and dark-field images from a single-exposure. Using the 2D differential-phase images, we also obtained a phase image with no streak artifacts.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
X-ray phase contrast imaging by compact Talbot–Lau interferometer with a single transmission grating

Naoki Morimoto, Sho Fujino, Ken-ichi Ohshima, Jimpei Harada, Takuji Hosoi, Heiji Watanabe, and Takayoshi Shimura
Opt. Lett. 39(15) 4297-4300 (2014)

Design and demonstration of phase gratings for 2D single grating interferometer

Naoki Morimoto, Sho Fujino, Yasuhiro Ito, Amane Yamazaki, Issei Sano, Takuji Hosoi, Heiji Watanabe, and Takayoshi Shimura
Opt. Express 23(23) 29399-29412 (2015)

Hard x-ray phase contrast imaging using a tabletop Talbot–Lau interferometer with multiline embedded x-ray targets

Takayoshi Shimura, Naoki Morimoto, Sho Fujino, Takaharu Nagatomi, Keni-chi Oshima, Jimpei Harada, Kazuhiko Omote, Naohisa Osaka, Takuji Hosoi, and Heiji Watanabe
Opt. Lett. 38(2) 157-159 (2013)

References

  • View by:
  • |
  • |
  • |

  1. U. Bonse and M. Hart, “An x-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965).
    [Crossref]
  2. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
    [Crossref] [PubMed]
  3. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384(6607), 335–338 (1996).
    [Crossref]
  4. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
    [Crossref]
  5. A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. 44(9ANo. 9A), 6355–6367 (2005).
    [Crossref]
  6. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
    [Crossref]
  7. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
    [Crossref] [PubMed]
  8. W. Yashiro, D. Noda, T. Hattori, K. Hayashi, A. Momose, and H. Kato, “A metallic glass grating for x-ray grating interferometers fabricated by imprinting,” Appl. Phys. Express 7(3), 032501 (2014).
    [Crossref]
  9. T. Shimura, N. Morimoto, S. Fujino, T. Nagatomi, K. C. Oshima, J. Harada, K. Omote, N. Osaka, T. Hosoi, and H. Watanabe, “Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferometer with multiline embedded x-ray targets,” Opt. Lett. 38(2), 157–159 (2013).
    [Crossref] [PubMed]
  10. N. Morimoto, S. Fujino, K. Ohshima, J. Harada, T. Hosoi, H. Watanabe, and T. Shimura, “X-ray phase contrast imaging by compact Talbot-Lau interferometer with a single transmission grating,” Opt. Lett. 39(15), 4297–4300 (2014).
    [Crossref] [PubMed]
  11. A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using Lau effect,” Appl. Phys. Express 4(6), 066603 (2011).
    [Crossref]
  12. G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
    [Crossref] [PubMed]
  13. I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
    [Crossref] [PubMed]
  14. G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
    [Crossref]
  15. H. H. Wen, E. E. Bennett, R. Kopace, A. F. Stein, and V. Pai, “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Opt. Lett. 35(12), 1932–1934 (2010).
    [Crossref] [PubMed]
  16. K. S. Morgan, P. Modregger, S. C. Irvine, S. Rutishauser, V. A. Guzenko, M. Stampanoni, and C. David, “A sensitive x-ray phase contrast technique for rapid imaging using a single phase grid analyzer,” Opt. Lett. 38(22), 4605–4608 (2013).
    [Crossref] [PubMed]
  17. M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90(22), 224101 (2007).
    [Crossref]
  18. T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
    [Crossref]
  19. C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15(3), 1175–1181 (2007).
    [Crossref] [PubMed]

2014 (2)

W. Yashiro, D. Noda, T. Hattori, K. Hayashi, A. Momose, and H. Kato, “A metallic glass grating for x-ray grating interferometers fabricated by imprinting,” Appl. Phys. Express 7(3), 032501 (2014).
[Crossref]

N. Morimoto, S. Fujino, K. Ohshima, J. Harada, T. Hosoi, H. Watanabe, and T. Shimura, “X-ray phase contrast imaging by compact Talbot-Lau interferometer with a single transmission grating,” Opt. Lett. 39(15), 4297–4300 (2014).
[Crossref] [PubMed]

2013 (2)

2011 (2)

2010 (2)

2009 (1)

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

2008 (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

2007 (2)

C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15(3), 1175–1181 (2007).
[Crossref] [PubMed]

M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90(22), 224101 (2007).
[Crossref]

2006 (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

2005 (1)

A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. 44(9ANo. 9A), 6355–6367 (2005).
[Crossref]

2003 (1)

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

1997 (1)

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

1996 (1)

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

1965 (1)

U. Bonse and M. Hart, “An x-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965).
[Crossref]

Arfelli, F.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Baumann, J.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90(22), 224101 (2007).
[Crossref]

Bech, M.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Bennett, E. E.

Bonse, U.

U. Bonse and M. Hart, “An x-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965).
[Crossref]

Brönnimann, Ch.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Bunk, O.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15(3), 1175–1181 (2007).
[Crossref] [PubMed]

M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90(22), 224101 (2007).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Chabior, M.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

Chapman, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

David, C.

K. S. Morgan, P. Modregger, S. C. Irvine, S. Rutishauser, V. A. Guzenko, M. Stampanoni, and C. David, “A sensitive x-ray phase contrast technique for rapid imaging using a single phase grid analyzer,” Opt. Lett. 38(22), 4605–4608 (2013).
[Crossref] [PubMed]

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15(3), 1175–1181 (2007).
[Crossref] [PubMed]

M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90(22), 224101 (2007).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Den, T.

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Donath, T.

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

Eikenberry, E. F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Engelhardt, M.

M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90(22), 224101 (2007).
[Crossref]

Fujino, S.

Gao, D.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Gmür, N.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Grünzweig, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Gureyev, T. E.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Guzenko, V. A.

Hamaishi, Y.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Handa, S.

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Harada, J.

Hart, M.

U. Bonse and M. Hart, “An x-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965).
[Crossref]

Hattori, T.

W. Yashiro, D. Noda, T. Hattori, K. Hayashi, A. Momose, and H. Kato, “A metallic glass grating for x-ray grating interferometers fabricated by imprinting,” Appl. Phys. Express 7(3), 032501 (2014).
[Crossref]

Hayashi, K.

W. Yashiro, D. Noda, T. Hattori, K. Hayashi, A. Momose, and H. Kato, “A metallic glass grating for x-ray grating interferometers fabricated by imprinting,” Appl. Phys. Express 7(3), 032501 (2014).
[Crossref]

Hempel, E.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

Hoheisel, M.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

Hosoi, T.

Irvine, S. C.

Itoh, H.

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Johnston, R. E.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Kato, H.

W. Yashiro, D. Noda, T. Hattori, K. Hayashi, A. Momose, and H. Kato, “A metallic glass grating for x-ray grating interferometers fabricated by imprinting,” Appl. Phys. Express 7(3), 032501 (2014).
[Crossref]

Kawamoto, S.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Kondoh, T.

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Kopace, R.

Kottler, C.

M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90(22), 224101 (2007).
[Crossref]

C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15(3), 1175–1181 (2007).
[Crossref] [PubMed]

Koyama, I.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Kuwabara, H.

A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using Lau effect,” Appl. Phys. Express 4(6), 066603 (2011).
[Crossref]

Menk, R.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Modregger, P.

Mohr, J.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

Momose, A.

W. Yashiro, D. Noda, T. Hattori, K. Hayashi, A. Momose, and H. Kato, “A metallic glass grating for x-ray grating interferometers fabricated by imprinting,” Appl. Phys. Express 7(3), 032501 (2014).
[Crossref]

A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using Lau effect,” Appl. Phys. Express 4(6), 066603 (2011).
[Crossref]

A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. 44(9ANo. 9A), 6355–6367 (2005).
[Crossref]

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Morgan, K. S.

Morimoto, N.

Nagai, K.

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Nagatomi, T.

Nakamura, T.

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Noda, D.

W. Yashiro, D. Noda, T. Hattori, K. Hayashi, A. Momose, and H. Kato, “A metallic glass grating for x-ray grating interferometers fabricated by imprinting,” Appl. Phys. Express 7(3), 032501 (2014).
[Crossref]

Ohshima, K.

Omote, K.

Osaka, N.

Oshima, K. C.

Ouchi, C.

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Pai, V.

Pfeiffer, F.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15(3), 1175–1181 (2007).
[Crossref] [PubMed]

M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90(22), 224101 (2007).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Pisano, E.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Pogany, A.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Popescu, S.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

Reznikova, E.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

Rutishauser, S.

Sato, G.

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Sayers, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Schuster, M.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90(22), 224101 (2007).
[Crossref]

Setomoto, Y.

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Shimura, T.

Stampanoni, M.

Stein, A. F.

Stevenson, A. W.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Suzuki, Y.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Takai, K.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

Teshima, T.

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Thomlinson, W.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Washburn, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Watanabe, H.

Weitkamp, T.

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Wen, H. H.

Wilkins, S. W.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Yamaguchi, K.

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Yashiro, W.

W. Yashiro, D. Noda, T. Hattori, K. Hayashi, A. Momose, and H. Kato, “A metallic glass grating for x-ray grating interferometers fabricated by imprinting,” Appl. Phys. Express 7(3), 032501 (2014).
[Crossref]

A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using Lau effect,” Appl. Phys. Express 4(6), 066603 (2011).
[Crossref]

Zanette, I.

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

Zhong, Z.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Appl. Phys. Express (2)

W. Yashiro, D. Noda, T. Hattori, K. Hayashi, A. Momose, and H. Kato, “A metallic glass grating for x-ray grating interferometers fabricated by imprinting,” Appl. Phys. Express 7(3), 032501 (2014).
[Crossref]

A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using Lau effect,” Appl. Phys. Express 4(6), 066603 (2011).
[Crossref]

Appl. Phys. Lett. (2)

M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90(22), 224101 (2007).
[Crossref]

U. Bonse and M. Hart, “An x-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965).
[Crossref]

J. Appl. Phys. (1)

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009).
[Crossref]

Jpn. J. Appl. Phys. (2)

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
[Crossref]

A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. 44(9ANo. 9A), 6355–6367 (2005).
[Crossref]

Nat. Mater. (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
[Crossref] [PubMed]

Nat. Phys. (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Nature (1)

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384(6607), 335–338 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Phys. Med. Biol. (1)

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

Other (1)

G. Sato, H. Itoh, K. Nagai, T. Nakamura, K. Yamaguchi, T. Kondoh, S. Handa, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Single-shot x-ray phase-contrast imaging using two-dimensional gratings,” in AIP Conf. Proc. 1466,29–34 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Two-dimensional x-ray Talbot–Lau interferometer with single transmission grating and micro x-ray-source array.
Fig. 2
Fig. 2 (a) External view and (b) scanning electron micrograph of micro-array targets embedded in diamond substrate. Scanning electron micrographs of checkerboard phase grating (c) surface and (d) cross section. The grating structure was etched into a (100) oriented silicon wafer. The wafer was 60 µm thick.
Fig. 3
Fig. 3 (a) Self-image of polymer sphere (polymethylmethacrylate) obtained from 2D configuration. The distance between the objects and detector was 50 cm. The scale indicates the length at the position of the sample. (b) Magnified image of the rectangular area shown in Fig. 3 (a). The scale indicates the length at the detector plane. (c) Intensity profile along horizontal (red) and vertical (blue) directions shown in Fig. 3 (b). (d) Vector image: arrows show the magnitude and direction of the displacement of self-image caused by x-ray refraction in the sample. The exposure time was 800 s.
Fig. 4
Fig. 4 Images of rice grain and polyethylene sphere: (a) self-image, (b) absorption image, DPC images along (c) x direction and (d) y direction, dark-field images in (e) x direction and (f) y direction. The distance between the objects and detector was 50 cm. The scale indicates the length at the sample position. The ranges are 20%–120% in transmission, −15–15 µrad in refraction angle, and 20%–120% in visibility. The exposure time was 800 s.
Fig. 5
Fig. 5 (a) Integrated phase image of the polymer sphere (polymethylmethacrylate) [φ (π)] in the x direction. (b) Phase image obtained using 2D algorithm [19]. The scale indicates the length at the position of the sample. The images are represented with a linear grayscale.

Metrics