Abstract

Advanced optical traps can probe single molecules with Ångstrom-scale precision, but drift limits the utility of these instruments. To achieve Å-scale stability, a differential measurement scheme between a pair of laser foci was introduced that substantially exceeds the inherent mechanical stability of various types of microscopes at room temperature. By using lock-in detection to measure both lasers with a single quadrant photodiode, we enhanced the differential stability of this optical reference frame and thereby stabilized an optical-trapping microscope to 0.2 Å laterally over 100 s based on the Allan deviation. In three dimensions, we achieved stabilities of 1 Å over 1,000 s and 1 nm over 15 h. This stability was complemented by high measurement bandwidth (100 kHz). Overall, our compact back-scattered detection enables an ultrastable measurement platform compatible with optical traps, atomic force microscopy, and optical microscopy, including super-resolution techniques.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D

Ashley R. Carter, Gavin M. King, and Thomas T. Perkins
Opt. Express 15(20) 13434-13445 (2007)

Stabilization of an optical microscope to 0.1 nm in three dimensions

Ashley R. Carter, Gavin M. King, Theresa A. Ulrich, Wayne Halsey, David Alchenberger, and Thomas T. Perkins
Appl. Opt. 46(3) 421-427 (2007)

Back-scattered detection yields viable signals in many conditions

Frederick B. Shipley and Ashley R. Carter
Opt. Express 20(9) 9581-9590 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [Crossref] [PubMed]
  2. D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
    [Crossref] [PubMed]
  3. W. J. Greenleaf, M. T. Woodside, and S. M. Block, “High-resolution, single-molecule measurements of biomolecular motion,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 171–190 (2007).
    [Crossref] [PubMed]
  4. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
    [Crossref] [PubMed]
  5. Y. R. Chemla and D. E. Smith, “Single-molecule studies of viral DNA packaging,” Adv. Exp. Med. Biol. 726, 549–584 (2012).
    [PubMed]
  6. T. T. Perkins, “Ångström-precision optical traps and applications,” Annu Rev Biophys 43(1), 279–302 (2014).
    [Crossref] [PubMed]
  7. J. M. Fernandez and H. Li, “Force-clamp spectroscopy monitors the folding trajectory of a single protein,” Science 303(5664), 1674–1678 (2004).
    [Crossref] [PubMed]
  8. C. A. Bippes and D. J. Muller, “High-resolution atomic force microscopy and spectroscopy of native membrane proteins,” Rep. Prog. Phys. 74(8), 086601 (2011).
    [Crossref]
  9. T. Hoffmann and L. Dougan, “Single molecule force spectroscopy using polyproteins,” Chem. Soc. Rev. 41(14), 4781–4796 (2012).
    [Crossref] [PubMed]
  10. J. W. Shaevitz, E. A. Abbondanzieri, R. Landick, and S. M. Block, “Backtracking by single RNA polymerase molecules observed at near-base-pair resolution,” Nature 426(6967), 684–687 (2003).
    [Crossref] [PubMed]
  11. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
    [Crossref] [PubMed]
  12. S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante, “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439(7072), 105–108 (2006).
    [Crossref] [PubMed]
  13. J. D. Wen, L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, “Following translation by single ribosomes one codon at a time,” Nature 452(7187), 598–603 (2008).
    [Crossref] [PubMed]
  14. J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
    [Crossref] [PubMed]
  15. W. Cheng, S. G. Arunajadai, J. R. Moffitt, I. Tinoco, and C. Bustamante, “Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase,” Science 333(6050), 1746–1749 (2011).
    [Crossref] [PubMed]
  16. C. Cecconi, E. A. Shank, C. Bustamante, and S. Marqusee, “Direct observation of the three-state folding of a single protein molecule,” Science 309(5743), 2057–2060 (2005).
    [Crossref] [PubMed]
  17. J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt, and M. Rief, “The complex folding network of single calmodulin molecules,” Science 334(6055), 512–516 (2011).
    [Crossref] [PubMed]
  18. H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5283–5288 (2012).
    [Crossref] [PubMed]
  19. K. Adelman, A. La Porta, T. J. Santangelo, J. T. Lis, J. W. Roberts, and M. D. Wang, “Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior,” Proc. Natl. Acad. Sci. U.S.A. 99(21), 13538–13543 (2002).
    [Crossref] [PubMed]
  20. T. T. Perkins, R. V. Dalal, P. G. Mitsis, and S. M. Block, “Sequence-dependent pausing of single lambda exonuclease molecules,” Science 301(5641), 1914–1918 (2003).
    [Crossref] [PubMed]
  21. K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking,” Cell 115(4), 437–447 (2003).
    [Crossref] [PubMed]
  22. K. M. Herbert, W. J. Greenleaf, and S. M. Block, “Single-molecule studies of RNA polymerase: Motoring along,” Annu. Rev. Biochem. 77(1), 149–176 (2008).
    [Crossref] [PubMed]
  23. J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9006–9011 (2006).
    [Crossref] [PubMed]
  24. A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J. 96(7), 2926–2934 (2009).
    [Crossref] [PubMed]
  25. W. Cheng, X. Hou, and F. Ye, “Use of tapered amplifier diode laser for biological-friendly high-resolution optical trapping,” Opt. Lett. 35(17), 2988–2990 (2010).
    [Crossref] [PubMed]
  26. M. Mahamdeh and E. Schäffer, “Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution,” Opt. Express 17(19), 17190–17199 (2009).
    [Crossref] [PubMed]
  27. M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
    [Crossref] [PubMed]
  28. W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
    [Crossref] [PubMed]
  29. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
    [Crossref] [PubMed]
  30. J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
    [Crossref] [PubMed]
  31. M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
    [Crossref]
  32. B. M. Lansdorp, S. J. Tabrizi, A. Dittmore, and O. A. Saleh, “A high-speed magnetic tweezer beyond 10,000 frames per second,” Rev. Sci. Instrum. 84(4), 044301 (2013).
    [Crossref] [PubMed]
  33. A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
    [Crossref] [PubMed]
  34. L. Nugent-Glandorf and T. T. Perkins, “Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection,” Opt. Lett. 29(22), 2611–2613 (2004).
    [Crossref] [PubMed]
  35. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt. 46(3), 421–427 (2007).
    [Crossref] [PubMed]
  36. G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: Atomic-scale stability and registration in ambient conditions,” Nano Lett. 9(4), 1451–1456 (2009).
    [Crossref] [PubMed]
  37. M. E. J. Friese, H. Rubinsztein-Dunlop, N. R. Heckenberg, and E. W. Dearden, “Determination of the force constant of a single-beam gradient trap by measurement of backscattered light,” Appl. Opt. 35(36), 7112–7116 (1996).
    [Crossref] [PubMed]
  38. A. R. Carter, G. M. King, and T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D,” Opt. Express 15(20), 13434–13445 (2007).
    [Crossref] [PubMed]
  39. W. C. Michels and N. L. Curtis, “A pentode lock‐in amplifier of high frequency selectivity,” Rev. Sci. Instrum. 12(9), 444–447 (1941).
    [Crossref]
  40. M. A. Taylor, J. Knittel, and W. P. Bowen, “Optical lock-in particle tracking in optical tweezers,” Opt. Express 21(7), 8018–8024 (2013).
    [Crossref] [PubMed]
  41. S. H. Lee, M. Baday, M. Tjioe, P. D. Simonson, R. Zhang, E. Cai, and P. R. Selvin, “Using fixed fiduciary markers for stage drift correction,” Opt. Express 20(11), 12177–12183 (2012).
    [Crossref] [PubMed]
  42. D. H. Paik and T. T. Perkins, “Single-molecule optical-trapping measurements with DNA anchored to an array of gold nanoposts,” Methods Mol. Biol. 875, 335–356 (2012).
    [PubMed]
  43. E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 74(7), 3246–3249 (2003).
    [Crossref]
  44. M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, “An automated two-dimensional optical force clamp for single molecule studies,” Biophys. J. 83(1), 491–501 (2002).
    [Crossref] [PubMed]
  45. D. B. Sullivan, D. W. Allan, D. A. Howe, and E. L. Walls, eds., Characterization of Clocks and Oscillators (U.S. Government Printing Office, 1990).
  46. F. Czerwinski, A. C. Richardson, and L. B. Oddershede, “Quantifying noise in optical tweezers by allan variance,” Opt. Express 17(15), 13255–13269 (2009).
    [Crossref] [PubMed]

2014 (1)

T. T. Perkins, “Ångström-precision optical traps and applications,” Annu Rev Biophys 43(1), 279–302 (2014).
[Crossref] [PubMed]

2013 (2)

B. M. Lansdorp, S. J. Tabrizi, A. Dittmore, and O. A. Saleh, “A high-speed magnetic tweezer beyond 10,000 frames per second,” Rev. Sci. Instrum. 84(4), 044301 (2013).
[Crossref] [PubMed]

M. A. Taylor, J. Knittel, and W. P. Bowen, “Optical lock-in particle tracking in optical tweezers,” Opt. Express 21(7), 8018–8024 (2013).
[Crossref] [PubMed]

2012 (5)

S. H. Lee, M. Baday, M. Tjioe, P. D. Simonson, R. Zhang, E. Cai, and P. R. Selvin, “Using fixed fiduciary markers for stage drift correction,” Opt. Express 20(11), 12177–12183 (2012).
[Crossref] [PubMed]

D. H. Paik and T. T. Perkins, “Single-molecule optical-trapping measurements with DNA anchored to an array of gold nanoposts,” Methods Mol. Biol. 875, 335–356 (2012).
[PubMed]

H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5283–5288 (2012).
[Crossref] [PubMed]

Y. R. Chemla and D. E. Smith, “Single-molecule studies of viral DNA packaging,” Adv. Exp. Med. Biol. 726, 549–584 (2012).
[PubMed]

T. Hoffmann and L. Dougan, “Single molecule force spectroscopy using polyproteins,” Chem. Soc. Rev. 41(14), 4781–4796 (2012).
[Crossref] [PubMed]

2011 (3)

W. Cheng, S. G. Arunajadai, J. R. Moffitt, I. Tinoco, and C. Bustamante, “Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase,” Science 333(6050), 1746–1749 (2011).
[Crossref] [PubMed]

C. A. Bippes and D. J. Muller, “High-resolution atomic force microscopy and spectroscopy of native membrane proteins,” Rep. Prog. Phys. 74(8), 086601 (2011).
[Crossref]

J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt, and M. Rief, “The complex folding network of single calmodulin molecules,” Science 334(6055), 512–516 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (5)

F. Czerwinski, A. C. Richardson, and L. B. Oddershede, “Quantifying noise in optical tweezers by allan variance,” Opt. Express 17(15), 13255–13269 (2009).
[Crossref] [PubMed]

M. Mahamdeh and E. Schäffer, “Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution,” Opt. Express 17(19), 17190–17199 (2009).
[Crossref] [PubMed]

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: Atomic-scale stability and registration in ambient conditions,” Nano Lett. 9(4), 1451–1456 (2009).
[Crossref] [PubMed]

A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J. 96(7), 2926–2934 (2009).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

2008 (4)

J. D. Wen, L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, “Following translation by single ribosomes one codon at a time,” Nature 452(7187), 598–603 (2008).
[Crossref] [PubMed]

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

K. M. Herbert, W. J. Greenleaf, and S. M. Block, “Single-molecule studies of RNA polymerase: Motoring along,” Annu. Rev. Biochem. 77(1), 149–176 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (2)

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante, “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439(7072), 105–108 (2006).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9006–9011 (2006).
[Crossref] [PubMed]

2005 (4)

M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
[Crossref]

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

C. Cecconi, E. A. Shank, C. Bustamante, and S. Marqusee, “Direct observation of the three-state folding of a single protein molecule,” Science 309(5743), 2057–2060 (2005).
[Crossref] [PubMed]

2004 (2)

J. M. Fernandez and H. Li, “Force-clamp spectroscopy monitors the folding trajectory of a single protein,” Science 303(5664), 1674–1678 (2004).
[Crossref] [PubMed]

L. Nugent-Glandorf and T. T. Perkins, “Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection,” Opt. Lett. 29(22), 2611–2613 (2004).
[Crossref] [PubMed]

2003 (4)

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 74(7), 3246–3249 (2003).
[Crossref]

J. W. Shaevitz, E. A. Abbondanzieri, R. Landick, and S. M. Block, “Backtracking by single RNA polymerase molecules observed at near-base-pair resolution,” Nature 426(6967), 684–687 (2003).
[Crossref] [PubMed]

T. T. Perkins, R. V. Dalal, P. G. Mitsis, and S. M. Block, “Sequence-dependent pausing of single lambda exonuclease molecules,” Science 301(5641), 1914–1918 (2003).
[Crossref] [PubMed]

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking,” Cell 115(4), 437–447 (2003).
[Crossref] [PubMed]

2002 (2)

K. Adelman, A. La Porta, T. J. Santangelo, J. T. Lis, J. W. Roberts, and M. D. Wang, “Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior,” Proc. Natl. Acad. Sci. U.S.A. 99(21), 13538–13543 (2002).
[Crossref] [PubMed]

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, “An automated two-dimensional optical force clamp for single molecule studies,” Biophys. J. 83(1), 491–501 (2002).
[Crossref] [PubMed]

1999 (1)

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

1998 (1)

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

1996 (1)

1994 (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

1993 (1)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

1988 (1)

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
[Crossref] [PubMed]

1941 (1)

W. C. Michels and N. L. Curtis, “A pentode lock‐in amplifier of high frequency selectivity,” Rev. Sci. Instrum. 12(9), 444–447 (1941).
[Crossref]

Aathavan, K.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

Abbondanzieri, E. A.

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

J. W. Shaevitz, E. A. Abbondanzieri, R. Landick, and S. M. Block, “Backtracking by single RNA polymerase molecules observed at near-base-pair resolution,” Nature 426(6967), 684–687 (2003).
[Crossref] [PubMed]

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking,” Cell 115(4), 437–447 (2003).
[Crossref] [PubMed]

Adelman, K.

K. Adelman, A. La Porta, T. J. Santangelo, J. T. Lis, J. W. Roberts, and M. D. Wang, “Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior,” Proc. Natl. Acad. Sci. U.S.A. 99(21), 13538–13543 (2002).
[Crossref] [PubMed]

Alchenberger, D.

Anderson, D. L.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

Arunajadai, S. G.

W. Cheng, S. G. Arunajadai, J. R. Moffitt, I. Tinoco, and C. Bustamante, “Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase,” Science 333(6050), 1746–1749 (2011).
[Crossref] [PubMed]

Asbury, C. L.

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, “An automated two-dimensional optical force clamp for single molecule studies,” Biophys. J. 83(1), 491–501 (2002).
[Crossref] [PubMed]

Baday, M.

Beran, R. K.

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante, “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439(7072), 105–108 (2006).
[Crossref] [PubMed]

Bippes, C. A.

C. A. Bippes and D. J. Muller, “High-resolution atomic force microscopy and spectroscopy of native membrane proteins,” Rep. Prog. Phys. 74(8), 086601 (2011).
[Crossref]

Block, S. M.

K. M. Herbert, W. J. Greenleaf, and S. M. Block, “Single-molecule studies of RNA polymerase: Motoring along,” Annu. Rev. Biochem. 77(1), 149–176 (2008).
[Crossref] [PubMed]

W. J. Greenleaf, M. T. Woodside, and S. M. Block, “High-resolution, single-molecule measurements of biomolecular motion,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 171–190 (2007).
[Crossref] [PubMed]

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

J. W. Shaevitz, E. A. Abbondanzieri, R. Landick, and S. M. Block, “Backtracking by single RNA polymerase molecules observed at near-base-pair resolution,” Nature 426(6967), 684–687 (2003).
[Crossref] [PubMed]

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking,” Cell 115(4), 437–447 (2003).
[Crossref] [PubMed]

T. T. Perkins, R. V. Dalal, P. G. Mitsis, and S. M. Block, “Sequence-dependent pausing of single lambda exonuclease molecules,” Science 301(5641), 1914–1918 (2003).
[Crossref] [PubMed]

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, “An automated two-dimensional optical force clamp for single molecule studies,” Biophys. J. 83(1), 491–501 (2002).
[Crossref] [PubMed]

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

Bowen, W. P.

Brigley, A. M.

H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5283–5288 (2012).
[Crossref] [PubMed]

Bustamante, C.

W. Cheng, S. G. Arunajadai, J. R. Moffitt, I. Tinoco, and C. Bustamante, “Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase,” Science 333(6050), 1746–1749 (2011).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

J. D. Wen, L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, “Following translation by single ribosomes one codon at a time,” Nature 452(7187), 598–603 (2008).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9006–9011 (2006).
[Crossref] [PubMed]

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante, “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439(7072), 105–108 (2006).
[Crossref] [PubMed]

C. Cecconi, E. A. Shank, C. Bustamante, and S. Marqusee, “Direct observation of the three-state folding of a single protein molecule,” Science 309(5743), 2057–2060 (2005).
[Crossref] [PubMed]

Cai, E.

Capitanio, M.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
[Crossref]

Carter, A. R.

A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J. 96(7), 2926–2934 (2009).
[Crossref] [PubMed]

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: Atomic-scale stability and registration in ambient conditions,” Nano Lett. 9(4), 1451–1456 (2009).
[Crossref] [PubMed]

A. R. Carter, G. M. King, and T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D,” Opt. Express 15(20), 13434–13445 (2007).
[Crossref] [PubMed]

A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt. 46(3), 421–427 (2007).
[Crossref] [PubMed]

Cecconi, C.

C. Cecconi, E. A. Shank, C. Bustamante, and S. Marqusee, “Direct observation of the three-state folding of a single protein molecule,” Science 309(5743), 2057–2060 (2005).
[Crossref] [PubMed]

Chemla, Y. R.

Y. R. Chemla and D. E. Smith, “Single-molecule studies of viral DNA packaging,” Adv. Exp. Med. Biol. 726, 549–584 (2012).
[PubMed]

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9006–9011 (2006).
[Crossref] [PubMed]

Cheng, W.

W. Cheng, S. G. Arunajadai, J. R. Moffitt, I. Tinoco, and C. Bustamante, “Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase,” Science 333(6050), 1746–1749 (2011).
[Crossref] [PubMed]

W. Cheng, X. Hou, and F. Ye, “Use of tapered amplifier diode laser for biological-friendly high-resolution optical trapping,” Opt. Lett. 35(17), 2988–2990 (2010).
[Crossref] [PubMed]

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante, “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439(7072), 105–108 (2006).
[Crossref] [PubMed]

Churnside, A. B.

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: Atomic-scale stability and registration in ambient conditions,” Nano Lett. 9(4), 1451–1456 (2009).
[Crossref] [PubMed]

Cicchi, R.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
[Crossref]

Curtis, N. L.

W. C. Michels and N. L. Curtis, “A pentode lock‐in amplifier of high frequency selectivity,” Rev. Sci. Instrum. 12(9), 444–447 (1941).
[Crossref]

Czerwinski, F.

Dalal, R. V.

T. T. Perkins, R. V. Dalal, P. G. Mitsis, and S. M. Block, “Sequence-dependent pausing of single lambda exonuclease molecules,” Science 301(5641), 1914–1918 (2003).
[Crossref] [PubMed]

Dearden, E. W.

Dittmore, A.

B. M. Lansdorp, S. J. Tabrizi, A. Dittmore, and O. A. Saleh, “A high-speed magnetic tweezer beyond 10,000 frames per second,” Rev. Sci. Instrum. 84(4), 044301 (2013).
[Crossref] [PubMed]

Dougan, L.

T. Hoffmann and L. Dougan, “Single molecule force spectroscopy using polyproteins,” Chem. Soc. Rev. 41(14), 4781–4796 (2012).
[Crossref] [PubMed]

Dufrêne, Y. F.

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

Dumont, S.

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante, “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439(7072), 105–108 (2006).
[Crossref] [PubMed]

Eberle, L. S.

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: Atomic-scale stability and registration in ambient conditions,” Nano Lett. 9(4), 1451–1456 (2009).
[Crossref] [PubMed]

Fernandez, J. M.

J. M. Fernandez and H. Li, “Force-clamp spectroscopy monitors the folding trajectory of a single protein,” Science 303(5664), 1674–1678 (2004).
[Crossref] [PubMed]

Florin, E.-L.

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Friese, M. E. J.

Gebhardt, J. C. M.

J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt, and M. Rief, “The complex folding network of single calmodulin molecules,” Science 334(6055), 512–516 (2011).
[Crossref] [PubMed]

Gelles, J.

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking,” Cell 115(4), 437–447 (2003).
[Crossref] [PubMed]

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
[Crossref] [PubMed]

Gieseke, A.

J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt, and M. Rief, “The complex folding network of single calmodulin molecules,” Science 334(6055), 512–516 (2011).
[Crossref] [PubMed]

Greenleaf, W. J.

K. M. Herbert, W. J. Greenleaf, and S. M. Block, “Single-molecule studies of RNA polymerase: Motoring along,” Annu. Rev. Biochem. 77(1), 149–176 (2008).
[Crossref] [PubMed]

W. J. Greenleaf, M. T. Woodside, and S. M. Block, “High-resolution, single-molecule measurements of biomolecular motion,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 171–190 (2007).
[Crossref] [PubMed]

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

Grimes, S.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

Gupta, A. N.

H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5283–5288 (2012).
[Crossref] [PubMed]

Halsey, W.

Heckenberg, N. R.

Herbert, K. M.

K. M. Herbert, W. J. Greenleaf, and S. M. Block, “Single-molecule studies of RNA polymerase: Motoring along,” Annu. Rev. Biochem. 77(1), 149–176 (2008).
[Crossref] [PubMed]

Hodges, C.

J. D. Wen, L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, “Following translation by single ribosomes one codon at a time,” Nature 452(7187), 598–603 (2008).
[Crossref] [PubMed]

Hoffmann, T.

T. Hoffmann and L. Dougan, “Single molecule force spectroscopy using polyproteins,” Chem. Soc. Rev. 41(14), 4781–4796 (2012).
[Crossref] [PubMed]

Hörber, J. K. H.

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Hou, X.

Izhaky, D.

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9006–9011 (2006).
[Crossref] [PubMed]

Jardine, P. J.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

Kapitein, L. C.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 74(7), 3246–3249 (2003).
[Crossref]

King, G. M.

Knittel, J.

La Porta, A.

K. Adelman, A. La Porta, T. J. Santangelo, J. T. Lis, J. W. Roberts, and M. D. Wang, “Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior,” Proc. Natl. Acad. Sci. U.S.A. 99(21), 13538–13543 (2002).
[Crossref] [PubMed]

Lancaster, L.

J. D. Wen, L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, “Following translation by single ribosomes one codon at a time,” Nature 452(7187), 598–603 (2008).
[Crossref] [PubMed]

Landick, R.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking,” Cell 115(4), 437–447 (2003).
[Crossref] [PubMed]

J. W. Shaevitz, E. A. Abbondanzieri, R. Landick, and S. M. Block, “Backtracking by single RNA polymerase molecules observed at near-base-pair resolution,” Nature 426(6967), 684–687 (2003).
[Crossref] [PubMed]

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

Lang, M. J.

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, “An automated two-dimensional optical force clamp for single molecule studies,” Biophys. J. 83(1), 491–501 (2002).
[Crossref] [PubMed]

Lansdorp, B. M.

B. M. Lansdorp, S. J. Tabrizi, A. Dittmore, and O. A. Saleh, “A high-speed magnetic tweezer beyond 10,000 frames per second,” Rev. Sci. Instrum. 84(4), 044301 (2013).
[Crossref] [PubMed]

Lee, S. H.

Li, H.

J. M. Fernandez and H. Li, “Force-clamp spectroscopy monitors the folding trajectory of a single protein,” Science 303(5664), 1674–1678 (2004).
[Crossref] [PubMed]

Lis, J. T.

K. Adelman, A. La Porta, T. J. Santangelo, J. T. Lis, J. W. Roberts, and M. D. Wang, “Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior,” Proc. Natl. Acad. Sci. U.S.A. 99(21), 13538–13543 (2002).
[Crossref] [PubMed]

Liu, X.

H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5283–5288 (2012).
[Crossref] [PubMed]

Mahamdeh, M.

Marqusee, S.

C. Cecconi, E. A. Shank, C. Bustamante, and S. Marqusee, “Direct observation of the three-state folding of a single protein molecule,” Science 309(5743), 2057–2060 (2005).
[Crossref] [PubMed]

Michels, W. C.

W. C. Michels and N. L. Curtis, “A pentode lock‐in amplifier of high frequency selectivity,” Rev. Sci. Instrum. 12(9), 444–447 (1941).
[Crossref]

Mitsis, P. G.

T. T. Perkins, R. V. Dalal, P. G. Mitsis, and S. M. Block, “Sequence-dependent pausing of single lambda exonuclease molecules,” Science 301(5641), 1914–1918 (2003).
[Crossref] [PubMed]

Moffitt, J. R.

W. Cheng, S. G. Arunajadai, J. R. Moffitt, I. Tinoco, and C. Bustamante, “Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase,” Science 333(6050), 1746–1749 (2011).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9006–9011 (2006).
[Crossref] [PubMed]

Muller, D. J.

C. A. Bippes and D. J. Muller, “High-resolution atomic force microscopy and spectroscopy of native membrane proteins,” Rep. Prog. Phys. 74(8), 086601 (2011).
[Crossref]

Müller, D. J.

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

Nagy, A.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking,” Cell 115(4), 437–447 (2003).
[Crossref] [PubMed]

Neupane, K.

H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5283–5288 (2012).
[Crossref] [PubMed]

Noller, H. F.

J. D. Wen, L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, “Following translation by single ribosomes one codon at a time,” Nature 452(7187), 598–603 (2008).
[Crossref] [PubMed]

Nugent-Glandorf, L.

Oddershede, L. B.

Paik, D. H.

D. H. Paik and T. T. Perkins, “Single-molecule optical-trapping measurements with DNA anchored to an array of gold nanoposts,” Methods Mol. Biol. 875, 335–356 (2012).
[PubMed]

Pavone, F. S.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
[Crossref]

Perkins, T. T.

T. T. Perkins, “Ångström-precision optical traps and applications,” Annu Rev Biophys 43(1), 279–302 (2014).
[Crossref] [PubMed]

D. H. Paik and T. T. Perkins, “Single-molecule optical-trapping measurements with DNA anchored to an array of gold nanoposts,” Methods Mol. Biol. 875, 335–356 (2012).
[PubMed]

A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J. 96(7), 2926–2934 (2009).
[Crossref] [PubMed]

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: Atomic-scale stability and registration in ambient conditions,” Nano Lett. 9(4), 1451–1456 (2009).
[Crossref] [PubMed]

A. R. Carter, G. M. King, and T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D,” Opt. Express 15(20), 13434–13445 (2007).
[Crossref] [PubMed]

A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt. 46(3), 421–427 (2007).
[Crossref] [PubMed]

L. Nugent-Glandorf and T. T. Perkins, “Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection,” Opt. Lett. 29(22), 2611–2613 (2004).
[Crossref] [PubMed]

T. T. Perkins, R. V. Dalal, P. G. Mitsis, and S. M. Block, “Sequence-dependent pausing of single lambda exonuclease molecules,” Science 301(5641), 1914–1918 (2003).
[Crossref] [PubMed]

Peterman, E. J. G.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 74(7), 3246–3249 (2003).
[Crossref]

Pralle, A.

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Prummer, M.

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Pyle, A. M.

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante, “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439(7072), 105–108 (2006).
[Crossref] [PubMed]

Richardson, A. C.

Rief, M.

J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt, and M. Rief, “The complex folding network of single calmodulin molecules,” Science 334(6055), 512–516 (2011).
[Crossref] [PubMed]

Roberts, J. W.

K. Adelman, A. La Porta, T. J. Santangelo, J. T. Lis, J. W. Roberts, and M. D. Wang, “Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior,” Proc. Natl. Acad. Sci. U.S.A. 99(21), 13538–13543 (2002).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

Saleh, O. A.

B. M. Lansdorp, S. J. Tabrizi, A. Dittmore, and O. A. Saleh, “A high-speed magnetic tweezer beyond 10,000 frames per second,” Rev. Sci. Instrum. 84(4), 044301 (2013).
[Crossref] [PubMed]

Santangelo, T. J.

K. Adelman, A. La Porta, T. J. Santangelo, J. T. Lis, J. W. Roberts, and M. D. Wang, “Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior,” Proc. Natl. Acad. Sci. U.S.A. 99(21), 13538–13543 (2002).
[Crossref] [PubMed]

Schäffer, E.

Schmidt, C. F.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 74(7), 3246–3249 (2003).
[Crossref]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
[Crossref] [PubMed]

Schnitzer, M. J.

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

Selvin, P. R.

Seol, Y.

A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J. 96(7), 2926–2934 (2009).
[Crossref] [PubMed]

Serebrov, V.

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante, “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439(7072), 105–108 (2006).
[Crossref] [PubMed]

Shaevitz, J. W.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

J. W. Shaevitz, E. A. Abbondanzieri, R. Landick, and S. M. Block, “Backtracking by single RNA polymerase molecules observed at near-base-pair resolution,” Nature 426(6967), 684–687 (2003).
[Crossref] [PubMed]

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, “An automated two-dimensional optical force clamp for single molecule studies,” Biophys. J. 83(1), 491–501 (2002).
[Crossref] [PubMed]

Shank, E. A.

C. Cecconi, E. A. Shank, C. Bustamante, and S. Marqusee, “Direct observation of the three-state folding of a single protein molecule,” Science 309(5743), 2057–2060 (2005).
[Crossref] [PubMed]

Sheetz, M. P.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
[Crossref] [PubMed]

Simonson, P. D.

Smith, D. E.

Y. R. Chemla and D. E. Smith, “Single-molecule studies of viral DNA packaging,” Adv. Exp. Med. Biol. 726, 549–584 (2012).
[PubMed]

Solanki, A.

H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5283–5288 (2012).
[Crossref] [PubMed]

Sosova, I.

H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5283–5288 (2012).
[Crossref] [PubMed]

Stelzer, E. H. K.

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Stigler, J.

J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt, and M. Rief, “The complex folding network of single calmodulin molecules,” Science 334(6055), 512–516 (2011).
[Crossref] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

Tabrizi, S. J.

B. M. Lansdorp, S. J. Tabrizi, A. Dittmore, and O. A. Saleh, “A high-speed magnetic tweezer beyond 10,000 frames per second,” Rev. Sci. Instrum. 84(4), 044301 (2013).
[Crossref] [PubMed]

Taylor, M. A.

Tinoco, I.

W. Cheng, S. G. Arunajadai, J. R. Moffitt, I. Tinoco, and C. Bustamante, “Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase,” Science 333(6050), 1746–1749 (2011).
[Crossref] [PubMed]

J. D. Wen, L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, “Following translation by single ribosomes one codon at a time,” Nature 452(7187), 598–603 (2008).
[Crossref] [PubMed]

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante, “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439(7072), 105–108 (2006).
[Crossref] [PubMed]

Tjioe, M.

Ulrich, T. A.

van Dijk, M. A.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 74(7), 3246–3249 (2003).
[Crossref]

Wang, M. D.

K. Adelman, A. La Porta, T. J. Santangelo, J. T. Lis, J. W. Roberts, and M. D. Wang, “Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior,” Proc. Natl. Acad. Sci. U.S.A. 99(21), 13538–13543 (2002).
[Crossref] [PubMed]

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

Wen, J. D.

J. D. Wen, L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, “Following translation by single ribosomes one codon at a time,” Nature 452(7187), 598–603 (2008).
[Crossref] [PubMed]

Woodside, M. T.

H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5283–5288 (2012).
[Crossref] [PubMed]

W. J. Greenleaf, M. T. Woodside, and S. M. Block, “High-resolution, single-molecule measurements of biomolecular motion,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 171–190 (2007).
[Crossref] [PubMed]

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref] [PubMed]

Ye, F.

Yin, H.

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

Yoshimura, S. H.

J. D. Wen, L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, “Following translation by single ribosomes one codon at a time,” Nature 452(7187), 598–603 (2008).
[Crossref] [PubMed]

Yu, H.

H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5283–5288 (2012).
[Crossref] [PubMed]

Zeri, A. C.

J. D. Wen, L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, “Following translation by single ribosomes one codon at a time,” Nature 452(7187), 598–603 (2008).
[Crossref] [PubMed]

Zhang, R.

Ziegler, F.

J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt, and M. Rief, “The complex folding network of single calmodulin molecules,” Science 334(6055), 512–516 (2011).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (1)

Y. R. Chemla and D. E. Smith, “Single-molecule studies of viral DNA packaging,” Adv. Exp. Med. Biol. 726, 549–584 (2012).
[PubMed]

Annu Rev Biophys (1)

T. T. Perkins, “Ångström-precision optical traps and applications,” Annu Rev Biophys 43(1), 279–302 (2014).
[Crossref] [PubMed]

Annu. Rev. Biochem. (1)

K. M. Herbert, W. J. Greenleaf, and S. M. Block, “Single-molecule studies of RNA polymerase: Motoring along,” Annu. Rev. Biochem. 77(1), 149–176 (2008).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (2)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

W. J. Greenleaf, M. T. Woodside, and S. M. Block, “High-resolution, single-molecule measurements of biomolecular motion,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 171–190 (2007).
[Crossref] [PubMed]

Appl. Opt. (2)

Biophys. J. (2)

A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J. 96(7), 2926–2934 (2009).
[Crossref] [PubMed]

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, “An automated two-dimensional optical force clamp for single molecule studies,” Biophys. J. 83(1), 491–501 (2002).
[Crossref] [PubMed]

Cell (1)

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking,” Cell 115(4), 437–447 (2003).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

T. Hoffmann and L. Dougan, “Single molecule force spectroscopy using polyproteins,” Chem. Soc. Rev. 41(14), 4781–4796 (2012).
[Crossref] [PubMed]

Eur. Phys. J. B (1)

M. Capitanio, R. Cicchi, and F. S. Pavone, “Position control and optical manipulation for nanotechnology applications,” Eur. Phys. J. B 46(1), 1–8 (2005).
[Crossref]

Methods Mol. Biol. (1)

D. H. Paik and T. T. Perkins, “Single-molecule optical-trapping measurements with DNA anchored to an array of gold nanoposts,” Methods Mol. Biol. 875, 335–356 (2012).
[PubMed]

Microsc. Res. Tech. (1)

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Nano Lett. (1)

G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: Atomic-scale stability and registration in ambient conditions,” Nano Lett. 9(4), 1451–1456 (2009).
[Crossref] [PubMed]

Nat. Methods (1)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

Nature (7)

J. W. Shaevitz, E. A. Abbondanzieri, R. Landick, and S. M. Block, “Backtracking by single RNA polymerase molecules observed at near-base-pair resolution,” Nature 426(6967), 684–687 (2003).
[Crossref] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref] [PubMed]

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante, “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439(7072), 105–108 (2006).
[Crossref] [PubMed]

J. D. Wen, L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, “Following translation by single ribosomes one codon at a time,” Nature 452(7187), 598–603 (2008).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9006–9011 (2006).
[Crossref] [PubMed]

H. Yu, X. Liu, K. Neupane, A. N. Gupta, A. M. Brigley, A. Solanki, I. Sosova, and M. T. Woodside, “Direct observation of multiple misfolding pathways in a single prion protein molecule,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5283–5288 (2012).
[Crossref] [PubMed]

K. Adelman, A. La Porta, T. J. Santangelo, J. T. Lis, J. W. Roberts, and M. D. Wang, “Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior,” Proc. Natl. Acad. Sci. U.S.A. 99(21), 13538–13543 (2002).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

C. A. Bippes and D. J. Muller, “High-resolution atomic force microscopy and spectroscopy of native membrane proteins,” Rep. Prog. Phys. 74(8), 086601 (2011).
[Crossref]

Rev. Sci. Instrum. (3)

W. C. Michels and N. L. Curtis, “A pentode lock‐in amplifier of high frequency selectivity,” Rev. Sci. Instrum. 12(9), 444–447 (1941).
[Crossref]

B. M. Lansdorp, S. J. Tabrizi, A. Dittmore, and O. A. Saleh, “A high-speed magnetic tweezer beyond 10,000 frames per second,” Rev. Sci. Instrum. 84(4), 044301 (2013).
[Crossref] [PubMed]

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 74(7), 3246–3249 (2003).
[Crossref]

Science (6)

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

T. T. Perkins, R. V. Dalal, P. G. Mitsis, and S. M. Block, “Sequence-dependent pausing of single lambda exonuclease molecules,” Science 301(5641), 1914–1918 (2003).
[Crossref] [PubMed]

J. M. Fernandez and H. Li, “Force-clamp spectroscopy monitors the folding trajectory of a single protein,” Science 303(5664), 1674–1678 (2004).
[Crossref] [PubMed]

W. Cheng, S. G. Arunajadai, J. R. Moffitt, I. Tinoco, and C. Bustamante, “Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase,” Science 333(6050), 1746–1749 (2011).
[Crossref] [PubMed]

C. Cecconi, E. A. Shank, C. Bustamante, and S. Marqusee, “Direct observation of the three-state folding of a single protein molecule,” Science 309(5743), 2057–2060 (2005).
[Crossref] [PubMed]

J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt, and M. Rief, “The complex folding network of single calmodulin molecules,” Science 334(6055), 512–516 (2011).
[Crossref] [PubMed]

Other (1)

D. B. Sullivan, D. W. Allan, D. A. Howe, and E. L. Walls, eds., Characterization of Clocks and Oscillators (U.S. Government Printing Office, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A wide variety of microscopy techniques can benefit from improved Ångstrom-scale precision and stability, including (a) a dual-beam optical-trap, (b) a surface-coupled optical trap, (c) atomic force microscopy, and (d) optical microscopy, particularly super-resolution techniques. In the first two assays, two focused lasers are used to measure opposite ends of a stretched molecule via scattered light. The ultimate limit to the precision of the position measurement is the differential-pointing stability between the lasers. This technique can be extended to actively stabilize the sample position for surface-coupled assays (b-d) using a reference mark attached to the sample.

Fig. 2
Fig. 2

Schematic of back-scattered detection (BSD) apparatus. Two laser diodes (LD) were modulated and actively stabilized by a combination of elements in the gray-dashed box. Each laser focus was translated laterally in the sample plane by mirrors positioned conjugate to the back focal plane of the objective (blue). The polarizing beam splitter cube (PBS) and quarter-wave plate (λ/4) acted as an optical isolator for efficient collection of back-scattered light. Back-scattered light was detected by a single quadrant photodiode (QPD). Acronyms represent the following: stabilized, modulated diode lasers (SMDL), acousto-optic modulator (AOM), photodiode (PD), lock-in amplifiers (LI), dichroic (DC), neutral density filters (ND), beam-sampler (BS), and piezo-electric (PZT).

Fig. 3
Fig. 3

Schematic of stabilization procedure using an out-of-loop monitor. Two modulated lasers scattered light from the same fiducial marker. The scattered light was detected on a common QPD, and the signals were electronically separated using lock-in amplifiers. After filtering and amplification, the signals were digitized by an FPGA, which used the signals to calculate the position of the sample. The 2.5-MHz signal stabilized the sample, while the 1-MHz signal provided an out-of-loop measurement. White boxes denote analog electronics. Grey boxes denote field programmable gate array (FPGA).

Fig. 4
Fig. 4

Simultaneous high-bandwidth detection of two lasers on a common detector. The normalized peak-to-peak voltage response of the detection system after demodulation is plotted as a function of the blinking rate of an LED placed immediately in front of the QPD.

Fig. 5
Fig. 5

Stabilization of an optical-trapping microscope to better than 1 nm in 3D over multiple hours. (a) Sample position versus time plotted during active stabilization as quantified by the out-of-loop detection laser [x (green), y (red), and z (blue)]. Data smoothed to 0.1 Hz for clarity. (b–d) Position-versus-time traces detail different 100-s time periods, emphasizing the Å-scale stability over any given 100-s period. Data smoothed to 10 Hz and offset vertically for clarity.

Fig. 6
Fig. 6

Sub-Å precision and stability over extended periods. The Allan deviation for the out-of-loop position record [Fig. 5(a)] plotted as function of averaging time for all 3 axes [x (green), y (red), and z (blue)]. The dashed line represents the expected improvement for averaging random noise.

Fig. 7
Fig. 7

Generation and detection of 1-Å steps. (a) Records of position versus time showing 1-Å steps detected with the out-of-loop laser (blue) as the stabilization set point of the in-loop signal (red) was updated by 1 Å every 2 s. (b) The Fourier transform of the pairwise distance difference between all pairs of points for both signals.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x( V x , V y , V z )= i,j,k=0 i+j+k=4 a ijk x V x i V y j V z k .
σ x ( τ )= 1 2 ( x i+1 x i ) 2 τ ,

Metrics