Abstract

We report a mechanism to obtain optical pulling or pushing forces exerted on the active dispersive chiral media. Electromagnetic wave equations for the pure chiral media using constitutive relations containing dispersive Drude models are numerically solved by means of Auxiliary Differential Equation Finite Difference Time Domain (ADE-FDTD) method. This method allows us to access the time averaged Lorentz force densities exerted on the magnetoelectric coupling chiral slabs via the derivation of bound electric and magnetic charge densities, as well as bound electric and magnetic current densities. Due to the continuously coupled cross-polarized electromagnetic waves, we find that the pressure gradient force is engendered on the active chiral slabs under a plane wave incidence. By changing the material parameters of the slabs, the total radiation pressure exerted on a single slab can be directed either along the propagation direction or in the opposite direction. This finding provides a promising avenue for detecting the chirality of materials by optical forces.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wave propagation and Lorentz force density in gain chiral structures

Guiping Li, Maoyan Wang, Hailong Li, Mengxia Yu, Yuliang Dong, and Jun Xu
Opt. Mater. Express 6(2) 388-395 (2016)

Ab initio study of the radiation pressure on dielectric and magnetic media

Brandon A. Kemp, Tomasz M. Grzegorczyk, and Jin Au Kong
Opt. Express 13(23) 9280-9291 (2005)

Radiation pressure and the linear momentum of the electromagnetic field

Masud Mansuripur
Opt. Express 12(22) 5375-5401 (2004)

References

  • View by:
  • |
  • |
  • |

  1. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, 1994).
  2. W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
    [Crossref] [PubMed]
  3. K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
    [Crossref]
  4. R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett. 103(10), 103602 (2009).
    [Crossref] [PubMed]
  5. Q. C. Shang, Z. S. Wu, T. Qu, Z. J. Li, L. Bai, and L. Gong, “Analysis of the radiation force and torque exerted on a chiral sphere by a Gaussian beam,” Opt. Express 21(7), 8677–8688 (2013).
    [Crossref] [PubMed]
  6. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref] [PubMed]
  7. M. Fujii, “Finite-difference analysis of plasmon-induced forces of metal nano-clusters by the Lorentz force formulation,” Opt. Express 18(26), 27731–27747 (2010).
    [Crossref] [PubMed]
  8. T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16(18), 14024–14035 (2008).
    [Crossref] [PubMed]
  9. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  10. J. M. Auñón and M. Nieto-Vesperinas, “Partially coherent fluctuating sources that produce the same optical force as a laser beam,” Opt. Lett. 38(15), 2869–2872 (2013).
    [Crossref] [PubMed]
  11. D. Gao, C. W. Qiu, L. Gao, T. Cui, and S. Zhang, “Macroscopic broadband optical escalator with force-loaded transformation optics,” Opt. Express 21(1), 796–803 (2013).
    [Crossref] [PubMed]
  12. S. H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
    [Crossref] [PubMed]
  13. I. V. Krasnov, “Bichromatic optical tractor beam for resonant atoms,” Phys. Lett. A 376(42–43), 2743–2749 (2012).
    [Crossref]
  14. A. Mizrahi and Y. Fainman, “Negative radiation pressure on gain medium structures,” Opt. Lett. 35(20), 3405–3407 (2010).
    [Crossref] [PubMed]
  15. A. Akbarzadeh, M. Danesh, C. W. Qiu, and A. J. Danner, “Tracing optical force fields within graded-index media,” New J. Phys. 16(5), 053035 (2014).
    [Crossref]
  16. A. Novitsky and C. W. Qiu, “Pulling extremely anisotropic lossy particles using light without intensity gradient,” Phys. Rev. A 90(5), 053815 (2014).
    [Crossref]
  17. Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys., A Mater. Sci. Process. 115(2), 409–414 (2014).
    [Crossref]
  18. A. Salandrino and D. N. Christodoulides, “Reverse optical forces in negative index dielectric waveguide arrays,” Opt. Lett. 36(16), 3103–3105 (2011).
    [Crossref] [PubMed]
  19. K. J. Webb and Shivanand, “Negative electromagnetic plane-wave force in gain media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(55 Pt 2), 057602 (2011).
    [Crossref] [PubMed]
  20. V. Kajorndejnukul, W. Q. Ding, S. Sukhov, C. W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
    [Crossref]
  21. D. S. Bradshaw and D. L. Andrews, “Chiral discrimination in optical trapping and manipulation,” New J. Phys. 16(10), 103021 (2014).
    [Crossref]
  22. A. Di Falco, “Chiral plasmonic nanostructures: twisted by DNA,” Nat. Mater. 13(9), 846–848 (2014).
    [Crossref] [PubMed]
  23. J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Prop. Lett. 5(1), 327–330 (2006).
    [Crossref]
  24. V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD formulation for dispersive chiral media using the Z transform method,” IEEE Trans. Antenn. Propag. 53(10), 3374–3384 (2005).
    [Crossref]
  25. A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
    [Crossref]
  26. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
    [Crossref]
  27. A. R. Zakharian, P. Polynkin, M. Mansuripur, and J. V. Moloney, “Single-beam trapping of micro-beads in polarized light: numerical simulations,” Opt. Express 14(8), 3660–3676 (2006).
    [Crossref] [PubMed]
  28. A. Zakharian, M. Mansuripur, and J. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13(7), 2321–2336 (2005).
    [Crossref] [PubMed]
  29. J. Q. Qin, X. L. Wang, D. Jia, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17(10), 8407–8416 (2009).
    [PubMed]
  30. A. Akyurtlu and D. H. Werner, “BI-FDTD: a novel Finite-Difference Time-Domain formulation for modeling wave propagation in Bi-isotropic media,” IEEE Trans. Antenn. Propag. 52(2), 416–425 (2004).
    [Crossref]
  31. A. Grande, I. Barba, A. C. L. Cabeceira, J. Represa, K. Kärkkäinen, and A. H. Sihvola, “Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy Bi-isotropic media using the auxiliary differential equation method,” IEEE Microw. Wirel. Compon. Lett. 15(5), 375–377 (2005).
    [Crossref]
  32. N. Engheta and R. W. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).
    [Crossref]
  33. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).
  34. I. V. Semchenko, S. A. Tretyakov, and A. N. Serdyukov, “Research on chiral and bianisotropic media in Byelorussia and Russia in the last ten years,” Prog. Electromagnetics Res. 12, 335–370 (1996).
  35. B. Kemp, T. Grzegorczyk, and J. Kong, “Ab initio study of the radiation pressure on dielectric and magnetic media,” Opt. Express 13(23), 9280–9291 (2005).
    [Crossref] [PubMed]
  36. G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
    [Crossref] [PubMed]
  37. H. P. Xiao, C. Y. He, C. X. Zhang, L. Z. Sun, P. Zhou, and J. X. Zhong, “Stability, electronic structures and transport properties of armchair (10, 10) BN/C nanotubes,” J. Solid State Chem. 200, 294–298 (2013).
    [Crossref]
  38. H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
    [Crossref] [PubMed]
  39. V. V. Pokropivny, “Noncarbon nanotubes, synthesis, structure, properties and promising applications,” in Proceedings of the 2001 International Conference Hydrogen Materials Science and Chemistry of Metal Hydrides, D. V. Schur, S. Y. Zaginaichenko, eds. (Springer, 2001), pp. 630–631.
  40. T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
    [Crossref] [PubMed]
  41. B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
    [Crossref]
  42. K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
    [Crossref]
  43. M. Mansuripur, “On the foundational equations of the classical theory of electrodynamics,” Resonance 18(2), 130–155 (2013).
    [Crossref]

2014 (10)

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

A. Akbarzadeh, M. Danesh, C. W. Qiu, and A. J. Danner, “Tracing optical force fields within graded-index media,” New J. Phys. 16(5), 053035 (2014).
[Crossref]

A. Novitsky and C. W. Qiu, “Pulling extremely anisotropic lossy particles using light without intensity gradient,” Phys. Rev. A 90(5), 053815 (2014).
[Crossref]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys., A Mater. Sci. Process. 115(2), 409–414 (2014).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Chiral discrimination in optical trapping and manipulation,” New J. Phys. 16(10), 103021 (2014).
[Crossref]

A. Di Falco, “Chiral plasmonic nanostructures: twisted by DNA,” Nat. Mater. 13(9), 846–848 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
[Crossref] [PubMed]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

2013 (6)

M. Mansuripur, “On the foundational equations of the classical theory of electrodynamics,” Resonance 18(2), 130–155 (2013).
[Crossref]

H. P. Xiao, C. Y. He, C. X. Zhang, L. Z. Sun, P. Zhou, and J. X. Zhong, “Stability, electronic structures and transport properties of armchair (10, 10) BN/C nanotubes,” J. Solid State Chem. 200, 294–298 (2013).
[Crossref]

V. Kajorndejnukul, W. Q. Ding, S. Sukhov, C. W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

D. Gao, C. W. Qiu, L. Gao, T. Cui, and S. Zhang, “Macroscopic broadband optical escalator with force-loaded transformation optics,” Opt. Express 21(1), 796–803 (2013).
[Crossref] [PubMed]

Q. C. Shang, Z. S. Wu, T. Qu, Z. J. Li, L. Bai, and L. Gong, “Analysis of the radiation force and torque exerted on a chiral sphere by a Gaussian beam,” Opt. Express 21(7), 8677–8688 (2013).
[Crossref] [PubMed]

J. M. Auñón and M. Nieto-Vesperinas, “Partially coherent fluctuating sources that produce the same optical force as a laser beam,” Opt. Lett. 38(15), 2869–2872 (2013).
[Crossref] [PubMed]

2012 (1)

I. V. Krasnov, “Bichromatic optical tractor beam for resonant atoms,” Phys. Lett. A 376(42–43), 2743–2749 (2012).
[Crossref]

2011 (3)

K. J. Webb and Shivanand, “Negative electromagnetic plane-wave force in gain media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(55 Pt 2), 057602 (2011).
[Crossref] [PubMed]

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

A. Salandrino and D. N. Christodoulides, “Reverse optical forces in negative index dielectric waveguide arrays,” Opt. Lett. 36(16), 3103–3105 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (3)

J. Q. Qin, X. L. Wang, D. Jia, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17(10), 8407–8416 (2009).
[PubMed]

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett. 103(10), 103602 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

2006 (2)

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Prop. Lett. 5(1), 327–330 (2006).
[Crossref]

A. R. Zakharian, P. Polynkin, M. Mansuripur, and J. V. Moloney, “Single-beam trapping of micro-beads in polarized light: numerical simulations,” Opt. Express 14(8), 3660–3676 (2006).
[Crossref] [PubMed]

2005 (5)

A. Zakharian, M. Mansuripur, and J. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13(7), 2321–2336 (2005).
[Crossref] [PubMed]

B. Kemp, T. Grzegorczyk, and J. Kong, “Ab initio study of the radiation pressure on dielectric and magnetic media,” Opt. Express 13(23), 9280–9291 (2005).
[Crossref] [PubMed]

A. Grande, I. Barba, A. C. L. Cabeceira, J. Represa, K. Kärkkäinen, and A. H. Sihvola, “Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy Bi-isotropic media using the auxiliary differential equation method,” IEEE Microw. Wirel. Compon. Lett. 15(5), 375–377 (2005).
[Crossref]

N. Engheta and R. W. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).
[Crossref]

V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD formulation for dispersive chiral media using the Z transform method,” IEEE Trans. Antenn. Propag. 53(10), 3374–3384 (2005).
[Crossref]

2004 (1)

A. Akyurtlu and D. H. Werner, “BI-FDTD: a novel Finite-Difference Time-Domain formulation for modeling wave propagation in Bi-isotropic media,” IEEE Trans. Antenn. Propag. 52(2), 416–425 (2004).
[Crossref]

2003 (1)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

1996 (1)

I. V. Semchenko, S. A. Tretyakov, and A. N. Serdyukov, “Research on chiral and bianisotropic media in Byelorussia and Russia in the last ten years,” Prog. Electromagnetics Res. 12, 335–370 (1996).

1987 (1)

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

1986 (1)

Akbarzadeh, A.

A. Akbarzadeh, M. Danesh, C. W. Qiu, and A. J. Danner, “Tracing optical force fields within graded-index media,” New J. Phys. 16(5), 053035 (2014).
[Crossref]

Akyurtlu, A.

A. Akyurtlu and D. H. Werner, “BI-FDTD: a novel Finite-Difference Time-Domain formulation for modeling wave propagation in Bi-isotropic media,” IEEE Trans. Antenn. Propag. 52(2), 416–425 (2004).
[Crossref]

Andrews, D. L.

D. S. Bradshaw and D. L. Andrews, “Chiral discrimination in optical trapping and manipulation,” New J. Phys. 16(10), 103021 (2014).
[Crossref]

Arvas, E.

V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD formulation for dispersive chiral media using the Z transform method,” IEEE Trans. Antenn. Propag. 53(10), 3374–3384 (2005).
[Crossref]

Ashkin, A.

Auñón, J. M.

Bai, L.

Barba, I.

A. Grande, I. Barba, A. C. L. Cabeceira, J. Represa, K. Kärkkäinen, and A. H. Sihvola, “Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy Bi-isotropic media using the auxiliary differential equation method,” IEEE Microw. Wirel. Compon. Lett. 15(5), 375–377 (2005).
[Crossref]

Bjorkholm, J. E.

Bouchal, Z.

Bradshaw, D. S.

D. S. Bradshaw and D. L. Andrews, “Chiral discrimination in optical trapping and manipulation,” New J. Phys. 16(10), 103021 (2014).
[Crossref]

Brasselet, E.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

Cabeceira, A. C. L.

A. Grande, I. Barba, A. C. L. Cabeceira, J. Represa, K. Kärkkäinen, and A. H. Sihvola, “Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy Bi-isotropic media using the auxiliary differential equation method,” IEEE Microw. Wirel. Compon. Lett. 15(5), 375–377 (2005).
[Crossref]

Chan, C. T.

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

Chen, J.

Christodoulides, D. N.

Chu, S.

Cižmár, T.

Cui, T.

Danesh, M.

A. Akbarzadeh, M. Danesh, C. W. Qiu, and A. J. Danner, “Tracing optical force fields within graded-index media,” New J. Phys. 16(5), 053035 (2014).
[Crossref]

Danner, A. J.

A. Akbarzadeh, M. Danesh, C. W. Qiu, and A. J. Danner, “Tracing optical force fields within graded-index media,” New J. Phys. 16(5), 053035 (2014).
[Crossref]

Demir, V.

V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD formulation for dispersive chiral media using the Z transform method,” IEEE Trans. Antenn. Propag. 53(10), 3374–3384 (2005).
[Crossref]

Dholakia, K.

Di Falco, A.

A. Di Falco, “Chiral plasmonic nanostructures: twisted by DNA,” Nat. Mater. 13(9), 846–848 (2014).
[Crossref] [PubMed]

Ding, J.

Ding, K.

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

Ding, W. Q.

V. Kajorndejnukul, W. Q. Ding, S. Sukhov, C. W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Dogariu, A.

V. Kajorndejnukul, W. Q. Ding, S. Sukhov, C. W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Durnin, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Dziedzic, J. M.

Eberly, J. H.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Economou, E. N.

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett. 103(10), 103602 (2009).
[Crossref] [PubMed]

Elsherbeni, A. Z.

V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD formulation for dispersive chiral media using the Z transform method,” IEEE Trans. Antenn. Propag. 53(10), 3374–3384 (2005).
[Crossref]

Engheta, N.

N. Engheta and R. W. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).
[Crossref]

Fainman, Y.

Fan, Y. X.

Fujii, M.

Gao, D.

Gao, L.

Gong, L.

González, O.

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Prop. Lett. 5(1), 327–330 (2006).
[Crossref]

Grande, A.

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Prop. Lett. 5(1), 327–330 (2006).
[Crossref]

A. Grande, I. Barba, A. C. L. Cabeceira, J. Represa, K. Kärkkäinen, and A. H. Sihvola, “Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy Bi-isotropic media using the auxiliary differential equation method,” IEEE Microw. Wirel. Compon. Lett. 15(5), 375–377 (2005).
[Crossref]

Grier, D. G.

Grzegorczyk, T.

Gunn-Moore, F.

Hannam, K.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

He, C. Y.

H. P. Xiao, C. Y. He, C. X. Zhang, L. Z. Sun, P. Zhou, and J. X. Zhong, “Stability, electronic structures and transport properties of armchair (10, 10) BN/C nanotubes,” J. Solid State Chem. 200, 294–298 (2013).
[Crossref]

Hosoi, K.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
[Crossref] [PubMed]

Huang, C. B.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Huang, J. S.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Jia, D.

Juodkazis, S.

Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys., A Mater. Sci. Process. 115(2), 409–414 (2014).
[Crossref]

Kafesaki, M.

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Kajorndejnukul, V.

V. Kajorndejnukul, W. Q. Ding, S. Sukhov, C. W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Kanto, Y.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
[Crossref] [PubMed]

Kärkkäinen, K.

A. Grande, I. Barba, A. C. L. Cabeceira, J. Represa, K. Kärkkäinen, and A. H. Sihvola, “Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy Bi-isotropic media using the auxiliary differential equation method,” IEEE Microw. Wirel. Compon. Lett. 15(5), 375–377 (2005).
[Crossref]

Kataura, H.

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Kawasaki, T.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
[Crossref] [PubMed]

Kemp, B.

Kivshar, Y. S.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

Kollárová, V.

Kong, J.

Koschny, T.

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett. 103(10), 103602 (2009).
[Crossref] [PubMed]

Krasnov, I. V.

I. V. Krasnov, “Bichromatic optical tractor beam for resonant atoms,” Phys. Lett. A 376(42–43), 2743–2749 (2012).
[Crossref]

Kuruhara, N.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
[Crossref] [PubMed]

Lee, S. H.

Li, Z. J.

Liu, H.

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Mansuripur, M.

Maslovski, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

Matsumoto, A.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
[Crossref] [PubMed]

Miceli, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Mizrahi, A.

Moloney, J.

Moloney, J. V.

Nakaoda, M.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
[Crossref] [PubMed]

Nefedov, I.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

Ng, J.

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

Nieto-Vesperinas, M.

Nishide, D.

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Nishijima, Y.

Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys., A Mater. Sci. Process. 115(2), 409–414 (2014).
[Crossref]

Novitsky, A.

A. Novitsky and C. W. Qiu, “Pulling extremely anisotropic lossy particles using light without intensity gradient,” Phys. Rev. A 90(5), 053815 (2014).
[Crossref]

Pereda, J. A.

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Prop. Lett. 5(1), 327–330 (2006).
[Crossref]

Polynkin, P.

Powell, D. A.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

Qin, J. Q.

Qiu, C. W.

A. Novitsky and C. W. Qiu, “Pulling extremely anisotropic lossy particles using light without intensity gradient,” Phys. Rev. A 90(5), 053815 (2014).
[Crossref]

A. Akbarzadeh, M. Danesh, C. W. Qiu, and A. J. Danner, “Tracing optical force fields within graded-index media,” New J. Phys. 16(5), 053035 (2014).
[Crossref]

D. Gao, C. W. Qiu, L. Gao, T. Cui, and S. Zhang, “Macroscopic broadband optical escalator with force-loaded transformation optics,” Opt. Express 21(1), 796–803 (2013).
[Crossref] [PubMed]

V. Kajorndejnukul, W. Q. Ding, S. Sukhov, C. W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Qu, T.

Represa, J.

A. Grande, I. Barba, A. C. L. Cabeceira, J. Represa, K. Kärkkäinen, and A. H. Sihvola, “Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy Bi-isotropic media using the auxiliary differential equation method,” IEEE Microw. Wirel. Compon. Lett. 15(5), 375–377 (2005).
[Crossref]

Roichman, Y.

Rosa, L.

Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys., A Mater. Sci. Process. 115(2), 409–414 (2014).
[Crossref]

Salandrino, A.

Sato, I.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
[Crossref] [PubMed]

Semchenko, I. V.

I. V. Semchenko, S. A. Tretyakov, and A. N. Serdyukov, “Research on chiral and bianisotropic media in Byelorussia and Russia in the last ten years,” Prog. Electromagnetics Res. 12, 335–370 (1996).

Serdyukov, A. N.

I. V. Semchenko, S. A. Tretyakov, and A. N. Serdyukov, “Research on chiral and bianisotropic media in Byelorussia and Russia in the last ten years,” Prog. Electromagnetics Res. 12, 335–370 (1996).

Shadrivov, I. V.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

Shang, Q. C.

Shivanand,

K. J. Webb and Shivanand, “Negative electromagnetic plane-wave force in gain media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(55 Pt 2), 057602 (2011).
[Crossref] [PubMed]

Sibbett, W.

Sihvola, A.

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

Sihvola, A. H.

A. Grande, I. Barba, A. C. L. Cabeceira, J. Represa, K. Kärkkäinen, and A. H. Sihvola, “Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy Bi-isotropic media using the auxiliary differential equation method,” IEEE Microw. Wirel. Compon. Lett. 15(5), 375–377 (2005).
[Crossref]

Simovski, C.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

Soai, K.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
[Crossref] [PubMed]

Soukoulis, C. M.

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett. 103(10), 103602 (2009).
[Crossref] [PubMed]

Sukhov, S.

V. Kajorndejnukul, W. Q. Ding, S. Sukhov, C. W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Sun, L. Z.

H. P. Xiao, C. Y. He, C. X. Zhang, L. Z. Sun, P. Zhou, and J. X. Zhong, “Stability, electronic structures and transport properties of armchair (10, 10) BN/C nanotubes,” J. Solid State Chem. 200, 294–298 (2013).
[Crossref]

Takahashi, Y.

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
[Crossref] [PubMed]

Tanaka, T.

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Tkachenko, G.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

Tretyakov, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

Tretyakov, S. A.

I. V. Semchenko, S. A. Tretyakov, and A. N. Serdyukov, “Research on chiral and bianisotropic media in Byelorussia and Russia in the last ten years,” Prog. Electromagnetics Res. 12, 335–370 (1996).

Tsai, W. Y.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Tsampoula, X.

Vegas, Á.

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Prop. Lett. 5(1), 327–330 (2006).
[Crossref]

Wang, B. N.

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Wang, H. T.

Wang, X. L.

Webb, K. J.

K. J. Webb and Shivanand, “Negative electromagnetic plane-wave force in gain media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(55 Pt 2), 057602 (2011).
[Crossref] [PubMed]

Werner, D. H.

A. Akyurtlu and D. H. Werner, “BI-FDTD: a novel Finite-Difference Time-Domain formulation for modeling wave propagation in Bi-isotropic media,” IEEE Trans. Antenn. Propag. 52(2), 416–425 (2004).
[Crossref]

Wu, Z. S.

Xiao, H. P.

H. P. Xiao, C. Y. He, C. X. Zhang, L. Z. Sun, P. Zhou, and J. X. Zhong, “Stability, electronic structures and transport properties of armchair (10, 10) BN/C nanotubes,” J. Solid State Chem. 200, 294–298 (2013).
[Crossref]

Zakharian, A.

Zakharian, A. R.

Zhang, C. X.

H. P. Xiao, C. Y. He, C. X. Zhang, L. Z. Sun, P. Zhou, and J. X. Zhong, “Stability, electronic structures and transport properties of armchair (10, 10) BN/C nanotubes,” J. Solid State Chem. 200, 294–298 (2013).
[Crossref]

Zhang, S.

Zhao, R.

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett. 103(10), 103602 (2009).
[Crossref] [PubMed]

Zhong, J. X.

H. P. Xiao, C. Y. He, C. X. Zhang, L. Z. Sun, P. Zhou, and J. X. Zhong, “Stability, electronic structures and transport properties of armchair (10, 10) BN/C nanotubes,” J. Solid State Chem. 200, 294–298 (2013).
[Crossref]

Zhou, J.

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett. 103(10), 103602 (2009).
[Crossref] [PubMed]

Zhou, J. F.

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Zhou, L.

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

Zhou, P.

H. P. Xiao, C. Y. He, C. X. Zhang, L. Z. Sun, P. Zhou, and J. X. Zhong, “Stability, electronic structures and transport properties of armchair (10, 10) BN/C nanotubes,” J. Solid State Chem. 200, 294–298 (2013).
[Crossref]

Ziolkowski, R. W.

N. Engheta and R. W. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).
[Crossref]

Angew. Chem. Int. Ed. (1)

T. Kawasaki, M. Nakaoda, Y. Takahashi, Y. Kanto, N. Kuruhara, K. Hosoi, I. Sato, A. Matsumoto, and K. Soai, “Self-replication and amplification of enantiomeric excess of chiral multifunctionalized large molecules by asymmetric autocatalysis,” Angew. Chem. Int. Ed. 126(42), 11381–11384 (2014).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys., A Mater. Sci. Process. 115(2), 409–414 (2014).
[Crossref]

IEEE Antenn. Wirel. Prop. Lett. (1)

J. A. Pereda, A. Grande, O. González, and Á. Vegas, “FDTD modeling of chiral media by using the mobius transformation technique,” IEEE Antenn. Wirel. Prop. Lett. 5(1), 327–330 (2006).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

A. Grande, I. Barba, A. C. L. Cabeceira, J. Represa, K. Kärkkäinen, and A. H. Sihvola, “Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy Bi-isotropic media using the auxiliary differential equation method,” IEEE Microw. Wirel. Compon. Lett. 15(5), 375–377 (2005).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

A. Akyurtlu and D. H. Werner, “BI-FDTD: a novel Finite-Difference Time-Domain formulation for modeling wave propagation in Bi-isotropic media,” IEEE Trans. Antenn. Propag. 52(2), 416–425 (2004).
[Crossref]

V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD formulation for dispersive chiral media using the Z transform method,” IEEE Trans. Antenn. Propag. 53(10), 3374–3384 (2005).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

N. Engheta and R. W. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).
[Crossref]

J. Electromagn. Wave (1)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Wave 17(5), 695–706 (2003).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

B. N. Wang, J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

J. Solid State Chem. (1)

H. P. Xiao, C. Y. He, C. X. Zhang, L. Z. Sun, P. Zhou, and J. X. Zhong, “Stability, electronic structures and transport properties of armchair (10, 10) BN/C nanotubes,” J. Solid State Chem. 200, 294–298 (2013).
[Crossref]

Metamaterials (Amst.) (1)

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

Nano Lett. (1)

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

A. Di Falco, “Chiral plasmonic nanostructures: twisted by DNA,” Nat. Mater. 13(9), 846–848 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

V. Kajorndejnukul, W. Q. Ding, S. Sukhov, C. W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

New J. Phys. (2)

D. S. Bradshaw and D. L. Andrews, “Chiral discrimination in optical trapping and manipulation,” New J. Phys. 16(10), 103021 (2014).
[Crossref]

A. Akbarzadeh, M. Danesh, C. W. Qiu, and A. J. Danner, “Tracing optical force fields within graded-index media,” New J. Phys. 16(5), 053035 (2014).
[Crossref]

Opt. Express (9)

A. Zakharian, M. Mansuripur, and J. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13(7), 2321–2336 (2005).
[Crossref] [PubMed]

B. Kemp, T. Grzegorczyk, and J. Kong, “Ab initio study of the radiation pressure on dielectric and magnetic media,” Opt. Express 13(23), 9280–9291 (2005).
[Crossref] [PubMed]

A. R. Zakharian, P. Polynkin, M. Mansuripur, and J. V. Moloney, “Single-beam trapping of micro-beads in polarized light: numerical simulations,” Opt. Express 14(8), 3660–3676 (2006).
[Crossref] [PubMed]

T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16(18), 14024–14035 (2008).
[Crossref] [PubMed]

J. Q. Qin, X. L. Wang, D. Jia, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17(10), 8407–8416 (2009).
[PubMed]

S. H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
[Crossref] [PubMed]

M. Fujii, “Finite-difference analysis of plasmon-induced forces of metal nano-clusters by the Lorentz force formulation,” Opt. Express 18(26), 27731–27747 (2010).
[Crossref] [PubMed]

D. Gao, C. W. Qiu, L. Gao, T. Cui, and S. Zhang, “Macroscopic broadband optical escalator with force-loaded transformation optics,” Opt. Express 21(1), 796–803 (2013).
[Crossref] [PubMed]

Q. C. Shang, Z. S. Wu, T. Qu, Z. J. Li, L. Bai, and L. Gong, “Analysis of the radiation force and torque exerted on a chiral sphere by a Gaussian beam,” Opt. Express 21(7), 8677–8688 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Lett. A (1)

I. V. Krasnov, “Bichromatic optical tractor beam for resonant atoms,” Phys. Lett. A 376(42–43), 2743–2749 (2012).
[Crossref]

Phys. Rev. A (2)

A. Novitsky and C. W. Qiu, “Pulling extremely anisotropic lossy particles using light without intensity gradient,” Phys. Rev. A 90(5), 053815 (2014).
[Crossref]

K. Ding, J. Ng, L. Zhou, and C. T. Chan, “Realization of optical pulling forces using chirality,” Phys. Rev. A 89(6), 063825 (2014).
[Crossref]

Phys. Rev. B (1)

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

K. J. Webb and Shivanand, “Negative electromagnetic plane-wave force in gain media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(55 Pt 2), 057602 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett. 103(10), 103602 (2009).
[Crossref] [PubMed]

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

I. V. Semchenko, S. A. Tretyakov, and A. N. Serdyukov, “Research on chiral and bianisotropic media in Byelorussia and Russia in the last ten years,” Prog. Electromagnetics Res. 12, 335–370 (1996).

Resonance (1)

M. Mansuripur, “On the foundational equations of the classical theory of electrodynamics,” Resonance 18(2), 130–155 (2013).
[Crossref]

Other (3)

V. V. Pokropivny, “Noncarbon nanotubes, synthesis, structure, properties and promising applications,” in Proceedings of the 2001 International Conference Hydrogen Materials Science and Chemistry of Metal Hydrides, D. V. Schur, S. Y. Zaginaichenko, eds. (Springer, 2001), pp. 630–631.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Function S versus electric plasma frequency, magnetoelectric coupling plasma frequency, and working frequency normalized by electric relaxation rate.
Fig. 2
Fig. 2 FDTD predicted co-polarized, cross-polarized, and net force densities Fz of a chiral slab suspended in free space. (a) λ0 = 640 nm, (b) λ0 = 480 nm.
Fig. 3
Fig. 3 Computed co-polarized, cross-polarized, and net force densities versus z inside chiral slabs. (a) pulling force densities, (b) pushing force densities.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

D(ω)=ε(ω)E+[ χ(ω)jκ(ω) ] μ 0 ε 0 H,
B(ω)=μ(ω)H+[ χ(ω)+jκ(ω) ] μ 0 ε 0 E,
ω ω pe 2 Γ e ω 4 + ω 2 Γ e 2 <0, ω ω pm 2 Γ m ω 4 + ω 2 Γ m 2 <0, ( ω 2 ω pκ 2 ω 4 + ω 2 Γ κ 2 ) 2 < ω ω pe 2 Γ e ω 4 + ω 2 Γ e 2 ω ω pm 2 Γ m ω 4 + ω 2 Γ m 2 .
J jω = ε 0 ω pe 2 E (jω) 2 + Γ e (jω) = P e , K c jω = ω pκ 2 μ 0 ε 0 H (jω) 2 + Γ κ (jω) = M c .
K jω = μ 0 ω pm 2 H (jω) 2 + Γ m (jω) = M n , J c jω = ω pκ 2 μ 0 ε 0 E (jω) 2 + Γ κ (jω) = P c .
×H= ε ε 0 E/t+J+ J s + K c ,×E= μ μ 0 H/tK J c , J/t+ Γ e J= ε 0 ω pe 2 E,K/t+ Γ m K= μ 0 ω pm 2 H, K c /t+ Γ κ K c = ε 0 μ 0 ω pκ 2 H, J c /t+ Γ κ J c = ε 0 μ 0 ω pκ 2 E.
F(r,t)=( J free +P/t)× μ 0 H+( ρ free P)E(M)H(M/t)× ε 0 E,
D= ε 0 E+P= ε ε 0 E+( P e + M c ),B= μ 0 H+M= μ μ 0 H+( M n + P c ).
ρ e_bound = ε 0 E=P, ρ m_bound = μ 0 H=M, J e_bound =P/t=[( P e + M c )/t+( ε 1)(×H)]/ ε , J m_bound =M/t=[( M n + P c )/t+(1 μ )×E]/ μ .
<F>=(1/T) 0 T ( ρ e_bound E+ J e_bound × μ 0 H+ ρ m_bound H J m_bound × ε 0 E)dt .

Metrics