Abstract

We report an actively stabilized interferometer-based set-up for the detection of vibrational circular dichroism (VCD) and optical rotatory dispersion (VORD) with femtosecond laser pulses. Our approach combines and improves elements of several previous measurement strategies, including signal amplification in a crossed polarizer configuration, precise control and modulation of polarization, phase stability, tight focusing, broad-band detection and spectral interferometry. Their importance for static and transient measurements is motivated by a signal analysis based on Jones matrices and response theory. Only depending on the pump-beam polarization, the set-up can selectively detect transient VCD and VORD or transient linear birefringence (LB) and linear dichroism (LD), which usually constitute the dominant artifacts in the chiral measurements. For illustration we present transient LB and LD data of an achiral Rhenium carbonyl complex, detected simultaneously by spectral interferometry, and we analyze residual background signals in the experimental configuration for transient chiral spectroscopy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-domain measurement of optical activity by an ultrastable common-path interferometer

Fabrizio Preda, Antonio Perri, Julien Réhault, Biplab Dutta, Jan Helbing, Giulio Cerullo, and Dario Polli
Opt. Lett. 43(8) 1882-1885 (2018)

Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD

Hanju Rhee, Young-Gun June, Zee Hwan Kim, Seung-Joon Jeon, and Minhaeng Cho
J. Opt. Soc. Am. B 26(5) 1008-1017 (2009)

A picosecond time-resolved vibrational circular dichroism spectrometer

Mathias Bonmarin and Jan Helbing
Opt. Lett. 33(18) 2086-2088 (2008)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Nafie, Vibrational Optical Activity - Principles and Applications (John Wiley & Sons, 2011).
    [Crossref]
  2. B. Wang and T. A. Keiderling, “Observations on the measurement of vibrational circular dichroism with rapid-scan and step-scan FT-IR techniques,” Appl. Spectros. 49, 1347–1355 (1995).
    [Crossref]
  3. F. Long, T. B. Freedman, R. Hapanowicz, and L. A. Nafie, “Comparison of step-scan and rapid-scan approaches to the measurement of mid-infrared Fourier transform vibrational circular dichroism,” Appl. Spect. 51, 504–507 (1997).
    [Crossref]
  4. P. L. Polavarapu, Z. Deng, and G.-C. Chen, “Polarization-division interferometry: Time-resolved infrared vibrational dichroism spectroscopy,” Appl. Spect. 49, 229–236 (1995).
    [Crossref]
  5. N. Ragunathan, N. s. Lee, T. B. Freedman, L. A. Nafie, C. Tripp, and H. Buijs, “Measurement of vibrational circular dichroism using a polarizing michelson interferometer,” Appl. Spect. 44, 5–7 (1990).
    [Crossref]
  6. S. Ludeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc. 133, 5704 (2011).
    [Crossref] [PubMed]
  7. A. Rüther, M. Pfeifer, V. A. Lrenz-Fonfra, and S. Lüdeke, “Reaction monitoring using mid-infrared laser-based vibrational circular dichroism,” Chirality 26, 490–496 (2014).
    [Crossref] [PubMed]
  8. C. Guo, R. D. Shah, J. Mills, R. K. Dukor, X. Cao, T. B. Freedman, and L. A. Nafie, “Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction,” Chirality 18, 775–782 (2006).
    [Crossref] [PubMed]
  9. M. Bonmarin and J. Helbing, “A picosecond time-resolved vibrational circular dichroism spectrometer,” Opt. Lett. 33, 2086–2089 (2008).
    [Crossref] [PubMed]
  10. M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
    [Crossref] [PubMed]
  11. J. Helbing and M. Bonmarin, “Time-resolved chiral vibrational spectroscopy,” Chimia 63, 128–133 (2009).
    [Crossref]
  12. H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: Theory,” J. Chem. Phys. 129, 094507 (2008).
    [Crossref] [PubMed]
  13. H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310 (2009).
    [Crossref] [PubMed]
  14. H. Rhee, Y.-G. June, Z. H. Kim, S.-J. Jeon, and M. Cho, “Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD,” J. Opt. Soc. Am. B 26, 1008 (2009).
    [Crossref]
  15. H. Rhee, J.-H. Choi, and M. Cho, “Infrared optical activity: Electric field approaches in time domain,” Acc. Chem. Res. 43, 1527–1536 (2010).
    [Crossref] [PubMed]
  16. J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
    [Crossref] [PubMed]
  17. J. Helbing and M. Bonmarin, “Vibrational chiral spectroscopy with femtosecond laser pulses,” EPJ Web of Conferences 5, 03004 (2010).
    [Crossref]
  18. D. B. Shapiro, R. A. Goldbeck, D. P. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical-rotatory dispersion spectroscopy - application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68, 326–334 (1995).
    [Crossref] [PubMed]
  19. C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a babinet-soleil compensator,” J. Opt. Soc. Am. B 23, 2418–2424 (2006).
    [Crossref]
  20. L. Mangot, G. Taupier, M. Romeo, A. Boeglin, O. Cregut, and K. D. Dorkenoo, “Broadband transient dichroism spectroscopy in chiral molecules,” Opt. Lett. 35, 381–383 (2010).
    [Crossref] [PubMed]
  21. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [Crossref]
  22. H. S. Chung, M. Khalil, A. W. Smith, and A. Tokmakoff, “Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics,” Rev. Sci. Inst. 78, 063101 (2007).
    [Crossref]
  23. D. J. Dummer, S. G. Kaplan, L. M. Hanssen, A. S. Pine, and Y. Zong, “High-quality Brewster’s angle polarizer for broadband infrared application,” Appl. Opt. 37, 1194 (1998).
    [Crossref]
  24. J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28, 171 (2011).
    [Crossref]
  25. J. Rehault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
    [Crossref] [PubMed]
  26. X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B 7, 1673–1684 (1990).
    [Crossref]
  27. S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
    [Crossref]
  28. D. Abramavicius and S. Mukamel, “Coherent third-order spectroscopic probes of molecular chirality,” J. Chem. Phys. 122134305 (2005).
    [Crossref] [PubMed]
  29. J. B. Asbury, Y. Wang, and T. Lian, “Time-dependent vibration stokes shift during solvation: Experiment and theory,” Bull. Chem. Soc. Jpn. 75, 973–983 (2002).
    [Crossref]
  30. J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: Ultrafast transient infrared spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc. 126, 990–991 (2004).
    [Crossref] [PubMed]
  31. B. Probst, M. Guttentag, A. Rodenberg, P. Hamm, and R. Alberto, “Photocatalytic H2 production from water with rhenium and cobalt complexes,” Inorg. Chem. 50, 3404–3412 (2011).
    [Crossref] [PubMed]
  32. D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett. 224, 145–154 (1994).
    [Crossref]
  33. J. Rehault and J. Helbing, “Angle determination and scattering suppression in polarization-enhanced two-dimensional infrared spectroscopy in the pump-probe geometry,” Opt. Express 20, 21665–21677 (2012).
    [Crossref] [PubMed]
  34. J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
    [Crossref] [PubMed]
  35. A. A. Siegman, LASERS (University Science Books, 1986).
  36. E. Polnau and H. Lochbihler, “Origin of modulated interference effects in photoelastic modulators,” Opt. Eng. 35, 3331 (1996).
    [Crossref]

2014 (1)

A. Rüther, M. Pfeifer, V. A. Lrenz-Fonfra, and S. Lüdeke, “Reaction monitoring using mid-infrared laser-based vibrational circular dichroism,” Chirality 26, 490–496 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (4)

J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28, 171 (2011).
[Crossref]

B. Probst, M. Guttentag, A. Rodenberg, P. Hamm, and R. Alberto, “Photocatalytic H2 production from water with rhenium and cobalt complexes,” Inorg. Chem. 50, 3404–3412 (2011).
[Crossref] [PubMed]

S. Ludeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc. 133, 5704 (2011).
[Crossref] [PubMed]

J. Rehault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[Crossref] [PubMed]

2010 (3)

H. Rhee, J.-H. Choi, and M. Cho, “Infrared optical activity: Electric field approaches in time domain,” Acc. Chem. Res. 43, 1527–1536 (2010).
[Crossref] [PubMed]

J. Helbing and M. Bonmarin, “Vibrational chiral spectroscopy with femtosecond laser pulses,” EPJ Web of Conferences 5, 03004 (2010).
[Crossref]

L. Mangot, G. Taupier, M. Romeo, A. Boeglin, O. Cregut, and K. D. Dorkenoo, “Broadband transient dichroism spectroscopy in chiral molecules,” Opt. Lett. 35, 381–383 (2010).
[Crossref] [PubMed]

2009 (5)

H. Rhee, Y.-G. June, Z. H. Kim, S.-J. Jeon, and M. Cho, “Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD,” J. Opt. Soc. Am. B 26, 1008 (2009).
[Crossref]

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[Crossref] [PubMed]

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310 (2009).
[Crossref] [PubMed]

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[Crossref] [PubMed]

J. Helbing and M. Bonmarin, “Time-resolved chiral vibrational spectroscopy,” Chimia 63, 128–133 (2009).
[Crossref]

2008 (2)

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: Theory,” J. Chem. Phys. 129, 094507 (2008).
[Crossref] [PubMed]

M. Bonmarin and J. Helbing, “A picosecond time-resolved vibrational circular dichroism spectrometer,” Opt. Lett. 33, 2086–2089 (2008).
[Crossref] [PubMed]

2007 (1)

H. S. Chung, M. Khalil, A. W. Smith, and A. Tokmakoff, “Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics,” Rev. Sci. Inst. 78, 063101 (2007).
[Crossref]

2006 (2)

C. Guo, R. D. Shah, J. Mills, R. K. Dukor, X. Cao, T. B. Freedman, and L. A. Nafie, “Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction,” Chirality 18, 775–782 (2006).
[Crossref] [PubMed]

C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a babinet-soleil compensator,” J. Opt. Soc. Am. B 23, 2418–2424 (2006).
[Crossref]

2005 (1)

D. Abramavicius and S. Mukamel, “Coherent third-order spectroscopic probes of molecular chirality,” J. Chem. Phys. 122134305 (2005).
[Crossref] [PubMed]

2004 (2)

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
[Crossref] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: Ultrafast transient infrared spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc. 126, 990–991 (2004).
[Crossref] [PubMed]

2002 (1)

J. B. Asbury, Y. Wang, and T. Lian, “Time-dependent vibration stokes shift during solvation: Experiment and theory,” Bull. Chem. Soc. Jpn. 75, 973–983 (2002).
[Crossref]

1998 (1)

1997 (1)

F. Long, T. B. Freedman, R. Hapanowicz, and L. A. Nafie, “Comparison of step-scan and rapid-scan approaches to the measurement of mid-infrared Fourier transform vibrational circular dichroism,” Appl. Spect. 51, 504–507 (1997).
[Crossref]

1996 (1)

E. Polnau and H. Lochbihler, “Origin of modulated interference effects in photoelastic modulators,” Opt. Eng. 35, 3331 (1996).
[Crossref]

1995 (4)

L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
[Crossref]

P. L. Polavarapu, Z. Deng, and G.-C. Chen, “Polarization-division interferometry: Time-resolved infrared vibrational dichroism spectroscopy,” Appl. Spect. 49, 229–236 (1995).
[Crossref]

B. Wang and T. A. Keiderling, “Observations on the measurement of vibrational circular dichroism with rapid-scan and step-scan FT-IR techniques,” Appl. Spectros. 49, 1347–1355 (1995).
[Crossref]

D. B. Shapiro, R. A. Goldbeck, D. P. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical-rotatory dispersion spectroscopy - application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68, 326–334 (1995).
[Crossref] [PubMed]

1994 (1)

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett. 224, 145–154 (1994).
[Crossref]

1991 (1)

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

1990 (2)

N. Ragunathan, N. s. Lee, T. B. Freedman, L. A. Nafie, C. Tripp, and H. Buijs, “Measurement of vibrational circular dichroism using a polarizing michelson interferometer,” Appl. Spect. 44, 5–7 (1990).
[Crossref]

X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B 7, 1673–1684 (1990).
[Crossref]

Abramavicius, D.

D. Abramavicius and S. Mukamel, “Coherent third-order spectroscopic probes of molecular chirality,” J. Chem. Phys. 122134305 (2005).
[Crossref] [PubMed]

Alberto, R.

B. Probst, M. Guttentag, A. Rodenberg, P. Hamm, and R. Alberto, “Photocatalytic H2 production from water with rhenium and cobalt complexes,” Inorg. Chem. 50, 3404–3412 (2011).
[Crossref] [PubMed]

Asbury, J. B.

J. B. Asbury, Y. Wang, and T. Lian, “Time-dependent vibration stokes shift during solvation: Experiment and theory,” Bull. Chem. Soc. Jpn. 75, 973–983 (2002).
[Crossref]

Bjorling, S. C.

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Boeglin, A.

Bonmarin, M.

J. Helbing and M. Bonmarin, “Vibrational chiral spectroscopy with femtosecond laser pulses,” EPJ Web of Conferences 5, 03004 (2010).
[Crossref]

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[Crossref] [PubMed]

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[Crossref] [PubMed]

J. Helbing and M. Bonmarin, “Time-resolved chiral vibrational spectroscopy,” Chimia 63, 128–133 (2009).
[Crossref]

M. Bonmarin and J. Helbing, “A picosecond time-resolved vibrational circular dichroism spectrometer,” Opt. Lett. 33, 2086–2089 (2008).
[Crossref] [PubMed]

Bredenbeck, J.

J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: Ultrafast transient infrared spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc. 126, 990–991 (2004).
[Crossref] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
[Crossref] [PubMed]

Buijs, H.

N. Ragunathan, N. s. Lee, T. B. Freedman, L. A. Nafie, C. Tripp, and H. Buijs, “Measurement of vibrational circular dichroism using a polarizing michelson interferometer,” Appl. Spect. 44, 5–7 (1990).
[Crossref]

Cao, X.

C. Guo, R. D. Shah, J. Mills, R. K. Dukor, X. Cao, T. B. Freedman, and L. A. Nafie, “Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction,” Chirality 18, 775–782 (2006).
[Crossref] [PubMed]

Che, D.

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett. 224, 145–154 (1994).
[Crossref]

Che, D. P.

D. B. Shapiro, R. A. Goldbeck, D. P. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical-rotatory dispersion spectroscopy - application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68, 326–334 (1995).
[Crossref] [PubMed]

Chen, G.-C.

P. L. Polavarapu, Z. Deng, and G.-C. Chen, “Polarization-division interferometry: Time-resolved infrared vibrational dichroism spectroscopy,” Appl. Spect. 49, 229–236 (1995).
[Crossref]

Cheriaux, G.

Cho, M.

H. Rhee, J.-H. Choi, and M. Cho, “Infrared optical activity: Electric field approaches in time domain,” Acc. Chem. Res. 43, 1527–1536 (2010).
[Crossref] [PubMed]

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310 (2009).
[Crossref] [PubMed]

H. Rhee, Y.-G. June, Z. H. Kim, S.-J. Jeon, and M. Cho, “Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD,” J. Opt. Soc. Am. B 26, 1008 (2009).
[Crossref]

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: Theory,” J. Chem. Phys. 129, 094507 (2008).
[Crossref] [PubMed]

Choi, J.-H.

H. Rhee, J.-H. Choi, and M. Cho, “Infrared optical activity: Electric field approaches in time domain,” Acc. Chem. Res. 43, 1527–1536 (2010).
[Crossref] [PubMed]

Chung, H. S.

H. S. Chung, M. Khalil, A. W. Smith, and A. Tokmakoff, “Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics,” Rev. Sci. Inst. 78, 063101 (2007).
[Crossref]

Cregut, O.

Deng, Z.

P. L. Polavarapu, Z. Deng, and G.-C. Chen, “Polarization-division interferometry: Time-resolved infrared vibrational dichroism spectroscopy,” Appl. Spect. 49, 229–236 (1995).
[Crossref]

Dorkenoo, K. D.

Dukor, R. K.

C. Guo, R. D. Shah, J. Mills, R. K. Dukor, X. Cao, T. B. Freedman, and L. A. Nafie, “Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction,” Chirality 18, 775–782 (2006).
[Crossref] [PubMed]

Dummer, D. J.

Esquerra, R. M.

D. B. Shapiro, R. A. Goldbeck, D. P. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical-rotatory dispersion spectroscopy - application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68, 326–334 (1995).
[Crossref] [PubMed]

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett. 224, 145–154 (1994).
[Crossref]

Fischer, P.

S. Ludeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc. 133, 5704 (2011).
[Crossref] [PubMed]

Freedman, T. B.

C. Guo, R. D. Shah, J. Mills, R. K. Dukor, X. Cao, T. B. Freedman, and L. A. Nafie, “Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction,” Chirality 18, 775–782 (2006).
[Crossref] [PubMed]

F. Long, T. B. Freedman, R. Hapanowicz, and L. A. Nafie, “Comparison of step-scan and rapid-scan approaches to the measurement of mid-infrared Fourier transform vibrational circular dichroism,” Appl. Spect. 51, 504–507 (1997).
[Crossref]

N. Ragunathan, N. s. Lee, T. B. Freedman, L. A. Nafie, C. Tripp, and H. Buijs, “Measurement of vibrational circular dichroism using a polarizing michelson interferometer,” Appl. Spect. 44, 5–7 (1990).
[Crossref]

Goldbeck, R. A.

D. B. Shapiro, R. A. Goldbeck, D. P. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical-rotatory dispersion spectroscopy - application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68, 326–334 (1995).
[Crossref] [PubMed]

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Guo, C.

C. Guo, R. D. Shah, J. Mills, R. K. Dukor, X. Cao, T. B. Freedman, and L. A. Nafie, “Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction,” Chirality 18, 775–782 (2006).
[Crossref] [PubMed]

Guttentag, M.

B. Probst, M. Guttentag, A. Rodenberg, P. Hamm, and R. Alberto, “Photocatalytic H2 production from water with rhenium and cobalt complexes,” Inorg. Chem. 50, 3404–3412 (2011).
[Crossref] [PubMed]

Ha, J.-H.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310 (2009).
[Crossref] [PubMed]

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: Theory,” J. Chem. Phys. 129, 094507 (2008).
[Crossref] [PubMed]

Hache, F.

Hamm, P.

J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28, 171 (2011).
[Crossref]

B. Probst, M. Guttentag, A. Rodenberg, P. Hamm, and R. Alberto, “Photocatalytic H2 production from water with rhenium and cobalt complexes,” Inorg. Chem. 50, 3404–3412 (2011).
[Crossref] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
[Crossref] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: Ultrafast transient infrared spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc. 126, 990–991 (2004).
[Crossref] [PubMed]

Hanssen, L. M.

Hapanowicz, R.

F. Long, T. B. Freedman, R. Hapanowicz, and L. A. Nafie, “Comparison of step-scan and rapid-scan approaches to the measurement of mid-infrared Fourier transform vibrational circular dichroism,” Appl. Spect. 51, 504–507 (1997).
[Crossref]

Helbing, J.

J. Rehault and J. Helbing, “Angle determination and scattering suppression in polarization-enhanced two-dimensional infrared spectroscopy in the pump-probe geometry,” Opt. Express 20, 21665–21677 (2012).
[Crossref] [PubMed]

J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28, 171 (2011).
[Crossref]

J. Rehault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[Crossref] [PubMed]

J. Helbing and M. Bonmarin, “Vibrational chiral spectroscopy with femtosecond laser pulses,” EPJ Web of Conferences 5, 03004 (2010).
[Crossref]

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[Crossref] [PubMed]

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[Crossref] [PubMed]

J. Helbing and M. Bonmarin, “Time-resolved chiral vibrational spectroscopy,” Chimia 63, 128–133 (2009).
[Crossref]

M. Bonmarin and J. Helbing, “A picosecond time-resolved vibrational circular dichroism spectrometer,” Opt. Lett. 33, 2086–2089 (2008).
[Crossref] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
[Crossref] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: Ultrafast transient infrared spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc. 126, 990–991 (2004).
[Crossref] [PubMed]

Jeon, S.-J.

H. Rhee, Y.-G. June, Z. H. Kim, S.-J. Jeon, and M. Cho, “Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD,” J. Opt. Soc. Am. B 26, 1008 (2009).
[Crossref]

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310 (2009).
[Crossref] [PubMed]

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: Theory,” J. Chem. Phys. 129, 094507 (2008).
[Crossref] [PubMed]

Joffre, M.

June, Y.-G.

H. Rhee, Y.-G. June, Z. H. Kim, S.-J. Jeon, and M. Cho, “Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD,” J. Opt. Soc. Am. B 26, 1008 (2009).
[Crossref]

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310 (2009).
[Crossref] [PubMed]

Kaplan, S. G.

Keiderling, T. A.

B. Wang and T. A. Keiderling, “Observations on the measurement of vibrational circular dichroism with rapid-scan and step-scan FT-IR techniques,” Appl. Spectros. 49, 1347–1355 (1995).
[Crossref]

Khalil, M.

H. S. Chung, M. Khalil, A. W. Smith, and A. Tokmakoff, “Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics,” Rev. Sci. Inst. 78, 063101 (2007).
[Crossref]

Kim, Z. H.

H. Rhee, Y.-G. June, Z. H. Kim, S.-J. Jeon, and M. Cho, “Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD,” J. Opt. Soc. Am. B 26, 1008 (2009).
[Crossref]

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310 (2009).
[Crossref] [PubMed]

Kliger, D. S.

D. B. Shapiro, R. A. Goldbeck, D. P. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical-rotatory dispersion spectroscopy - application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68, 326–334 (1995).
[Crossref] [PubMed]

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett. 224, 145–154 (1994).
[Crossref]

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Lee, J.-S.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310 (2009).
[Crossref] [PubMed]

Lee, K.-K.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310 (2009).
[Crossref] [PubMed]

Lee, N. s.

N. Ragunathan, N. s. Lee, T. B. Freedman, L. A. Nafie, C. Tripp, and H. Buijs, “Measurement of vibrational circular dichroism using a polarizing michelson interferometer,” Appl. Spect. 44, 5–7 (1990).
[Crossref]

Lepetit, L.

Lewis, J. W.

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Lian, T.

J. B. Asbury, Y. Wang, and T. Lian, “Time-dependent vibration stokes shift during solvation: Experiment and theory,” Bull. Chem. Soc. Jpn. 75, 973–983 (2002).
[Crossref]

Lochbihler, H.

E. Polnau and H. Lochbihler, “Origin of modulated interference effects in photoelastic modulators,” Opt. Eng. 35, 3331 (1996).
[Crossref]

Long, F.

F. Long, T. B. Freedman, R. Hapanowicz, and L. A. Nafie, “Comparison of step-scan and rapid-scan approaches to the measurement of mid-infrared Fourier transform vibrational circular dichroism,” Appl. Spect. 51, 504–507 (1997).
[Crossref]

Lrenz-Fonfra, V. A.

A. Rüther, M. Pfeifer, V. A. Lrenz-Fonfra, and S. Lüdeke, “Reaction monitoring using mid-infrared laser-based vibrational circular dichroism,” Chirality 26, 490–496 (2014).
[Crossref] [PubMed]

Ludeke, S.

S. Ludeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc. 133, 5704 (2011).
[Crossref] [PubMed]

Lüdeke, S.

A. Rüther, M. Pfeifer, V. A. Lrenz-Fonfra, and S. Lüdeke, “Reaction monitoring using mid-infrared laser-based vibrational circular dichroism,” Chirality 26, 490–496 (2014).
[Crossref] [PubMed]

Mangot, L.

Milder, S. J.

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Mills, J.

C. Guo, R. D. Shah, J. Mills, R. K. Dukor, X. Cao, T. B. Freedman, and L. A. Nafie, “Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction,” Chirality 18, 775–782 (2006).
[Crossref] [PubMed]

Mukamel, S.

D. Abramavicius and S. Mukamel, “Coherent third-order spectroscopic probes of molecular chirality,” J. Chem. Phys. 122134305 (2005).
[Crossref] [PubMed]

Nafie, L. A.

C. Guo, R. D. Shah, J. Mills, R. K. Dukor, X. Cao, T. B. Freedman, and L. A. Nafie, “Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction,” Chirality 18, 775–782 (2006).
[Crossref] [PubMed]

F. Long, T. B. Freedman, R. Hapanowicz, and L. A. Nafie, “Comparison of step-scan and rapid-scan approaches to the measurement of mid-infrared Fourier transform vibrational circular dichroism,” Appl. Spect. 51, 504–507 (1997).
[Crossref]

N. Ragunathan, N. s. Lee, T. B. Freedman, L. A. Nafie, C. Tripp, and H. Buijs, “Measurement of vibrational circular dichroism using a polarizing michelson interferometer,” Appl. Spect. 44, 5–7 (1990).
[Crossref]

L. A. Nafie, Vibrational Optical Activity - Principles and Applications (John Wiley & Sons, 2011).
[Crossref]

Niezborala, C.

Olivucci, M.

J. Rehault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[Crossref] [PubMed]

Paquette, S. J.

D. B. Shapiro, R. A. Goldbeck, D. P. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical-rotatory dispersion spectroscopy - application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68, 326–334 (1995).
[Crossref] [PubMed]

Pfeifer, M.

A. Rüther, M. Pfeifer, V. A. Lrenz-Fonfra, and S. Lüdeke, “Reaction monitoring using mid-infrared laser-based vibrational circular dichroism,” Chirality 26, 490–496 (2014).
[Crossref] [PubMed]

S. Ludeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc. 133, 5704 (2011).
[Crossref] [PubMed]

Pine, A. S.

Polavarapu, P. L.

P. L. Polavarapu, Z. Deng, and G.-C. Chen, “Polarization-division interferometry: Time-resolved infrared vibrational dichroism spectroscopy,” Appl. Spect. 49, 229–236 (1995).
[Crossref]

Polnau, E.

E. Polnau and H. Lochbihler, “Origin of modulated interference effects in photoelastic modulators,” Opt. Eng. 35, 3331 (1996).
[Crossref]

Probst, B.

B. Probst, M. Guttentag, A. Rodenberg, P. Hamm, and R. Alberto, “Photocatalytic H2 production from water with rhenium and cobalt complexes,” Inorg. Chem. 50, 3404–3412 (2011).
[Crossref] [PubMed]

Ragunathan, N.

N. Ragunathan, N. s. Lee, T. B. Freedman, L. A. Nafie, C. Tripp, and H. Buijs, “Measurement of vibrational circular dichroism using a polarizing michelson interferometer,” Appl. Spect. 44, 5–7 (1990).
[Crossref]

Randall, C. E.

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Rehault, J.

J. Rehault and J. Helbing, “Angle determination and scattering suppression in polarization-enhanced two-dimensional infrared spectroscopy in the pump-probe geometry,” Opt. Express 20, 21665–21677 (2012).
[Crossref] [PubMed]

J. Rehault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[Crossref] [PubMed]

Rhee, H.

H. Rhee, J.-H. Choi, and M. Cho, “Infrared optical activity: Electric field approaches in time domain,” Acc. Chem. Res. 43, 1527–1536 (2010).
[Crossref] [PubMed]

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310 (2009).
[Crossref] [PubMed]

H. Rhee, Y.-G. June, Z. H. Kim, S.-J. Jeon, and M. Cho, “Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD,” J. Opt. Soc. Am. B 26, 1008 (2009).
[Crossref]

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: Theory,” J. Chem. Phys. 129, 094507 (2008).
[Crossref] [PubMed]

Rodenberg, A.

B. Probst, M. Guttentag, A. Rodenberg, P. Hamm, and R. Alberto, “Photocatalytic H2 production from water with rhenium and cobalt complexes,” Inorg. Chem. 50, 3404–3412 (2011).
[Crossref] [PubMed]

Romeo, M.

Rüther, A.

A. Rüther, M. Pfeifer, V. A. Lrenz-Fonfra, and S. Lüdeke, “Reaction monitoring using mid-infrared laser-based vibrational circular dichroism,” Chirality 26, 490–496 (2014).
[Crossref] [PubMed]

Shah, R. D.

C. Guo, R. D. Shah, J. Mills, R. K. Dukor, X. Cao, T. B. Freedman, and L. A. Nafie, “Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction,” Chirality 18, 775–782 (2006).
[Crossref] [PubMed]

Shapiro, D. B.

D. B. Shapiro, R. A. Goldbeck, D. P. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical-rotatory dispersion spectroscopy - application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68, 326–334 (1995).
[Crossref] [PubMed]

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett. 224, 145–154 (1994).
[Crossref]

Siegman, A. A.

A. A. Siegman, LASERS (University Science Books, 1986).

Simon, J. D.

Smith, A. W.

H. S. Chung, M. Khalil, A. W. Smith, and A. Tokmakoff, “Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics,” Rev. Sci. Inst. 78, 063101 (2007).
[Crossref]

Taupier, G.

Tokmakoff, A.

H. S. Chung, M. Khalil, A. W. Smith, and A. Tokmakoff, “Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics,” Rev. Sci. Inst. 78, 063101 (2007).
[Crossref]

Tripp, C.

N. Ragunathan, N. s. Lee, T. B. Freedman, L. A. Nafie, C. Tripp, and H. Buijs, “Measurement of vibrational circular dichroism using a polarizing michelson interferometer,” Appl. Spect. 44, 5–7 (1990).
[Crossref]

Wang, B.

B. Wang and T. A. Keiderling, “Observations on the measurement of vibrational circular dichroism with rapid-scan and step-scan FT-IR techniques,” Appl. Spectros. 49, 1347–1355 (1995).
[Crossref]

Wang, Y.

J. B. Asbury, Y. Wang, and T. Lian, “Time-dependent vibration stokes shift during solvation: Experiment and theory,” Bull. Chem. Soc. Jpn. 75, 973–983 (2002).
[Crossref]

Xie, X.

Zanirato, V.

J. Rehault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[Crossref] [PubMed]

Zong, Y.

Acc. Chem. Res. (1)

H. Rhee, J.-H. Choi, and M. Cho, “Infrared optical activity: Electric field approaches in time domain,” Acc. Chem. Res. 43, 1527–1536 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spect. (3)

F. Long, T. B. Freedman, R. Hapanowicz, and L. A. Nafie, “Comparison of step-scan and rapid-scan approaches to the measurement of mid-infrared Fourier transform vibrational circular dichroism,” Appl. Spect. 51, 504–507 (1997).
[Crossref]

P. L. Polavarapu, Z. Deng, and G.-C. Chen, “Polarization-division interferometry: Time-resolved infrared vibrational dichroism spectroscopy,” Appl. Spect. 49, 229–236 (1995).
[Crossref]

N. Ragunathan, N. s. Lee, T. B. Freedman, L. A. Nafie, C. Tripp, and H. Buijs, “Measurement of vibrational circular dichroism using a polarizing michelson interferometer,” Appl. Spect. 44, 5–7 (1990).
[Crossref]

Appl. Spectros. (1)

B. Wang and T. A. Keiderling, “Observations on the measurement of vibrational circular dichroism with rapid-scan and step-scan FT-IR techniques,” Appl. Spectros. 49, 1347–1355 (1995).
[Crossref]

Biophys. J. (1)

D. B. Shapiro, R. A. Goldbeck, D. P. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical-rotatory dispersion spectroscopy - application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68, 326–334 (1995).
[Crossref] [PubMed]

Bull. Chem. Soc. Jpn. (1)

J. B. Asbury, Y. Wang, and T. Lian, “Time-dependent vibration stokes shift during solvation: Experiment and theory,” Bull. Chem. Soc. Jpn. 75, 973–983 (2002).
[Crossref]

Chem. Phys. Lett. (1)

D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett. 224, 145–154 (1994).
[Crossref]

Chimia (1)

J. Helbing and M. Bonmarin, “Time-resolved chiral vibrational spectroscopy,” Chimia 63, 128–133 (2009).
[Crossref]

Chirality (3)

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[Crossref] [PubMed]

A. Rüther, M. Pfeifer, V. A. Lrenz-Fonfra, and S. Lüdeke, “Reaction monitoring using mid-infrared laser-based vibrational circular dichroism,” Chirality 26, 490–496 (2014).
[Crossref] [PubMed]

C. Guo, R. D. Shah, J. Mills, R. K. Dukor, X. Cao, T. B. Freedman, and L. A. Nafie, “Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction,” Chirality 18, 775–782 (2006).
[Crossref] [PubMed]

EPJ Web of Conferences (1)

J. Helbing and M. Bonmarin, “Vibrational chiral spectroscopy with femtosecond laser pulses,” EPJ Web of Conferences 5, 03004 (2010).
[Crossref]

Inorg. Chem. (1)

B. Probst, M. Guttentag, A. Rodenberg, P. Hamm, and R. Alberto, “Photocatalytic H2 production from water with rhenium and cobalt complexes,” Inorg. Chem. 50, 3404–3412 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: Ultrafast transient infrared spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc. 126, 990–991 (2004).
[Crossref] [PubMed]

S. Ludeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc. 133, 5704 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (5)

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: Theory,” J. Chem. Phys. 129, 094507 (2008).
[Crossref] [PubMed]

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[Crossref] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient 2D-IR spectroscopy exploring the polarization dependence,” J. Chem. Phys. 121, 5943–5957 (2004).
[Crossref] [PubMed]

D. Abramavicius and S. Mukamel, “Coherent third-order spectroscopic probes of molecular chirality,” J. Chem. Phys. 122134305 (2005).
[Crossref] [PubMed]

J. Rehault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (5)

J. Phys. Chem. (1)

S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, “Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism,” J. Phys. Chem. 95, 4685–4694 (1991).
[Crossref]

Nature (1)

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310 (2009).
[Crossref] [PubMed]

Opt. Eng. (1)

E. Polnau and H. Lochbihler, “Origin of modulated interference effects in photoelastic modulators,” Opt. Eng. 35, 3331 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Rev. Sci. Inst. (1)

H. S. Chung, M. Khalil, A. W. Smith, and A. Tokmakoff, “Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics,” Rev. Sci. Inst. 78, 063101 (2007).
[Crossref]

Other (2)

A. A. Siegman, LASERS (University Science Books, 1986).

L. A. Nafie, Vibrational Optical Activity - Principles and Applications (John Wiley & Sons, 2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic comparison of laser-based VCD set-ups (a) Original scheme used for transient VCD [9]. (b) Crossed polarizer setup for spectral interferometry as introduced by Cho and coworkers [12,13] (c) New setup which combines elements of a and b. Blue circles (±x) and purple and orange arrows (±y) represent the polarization direction and sign of the different fields for four consecutive laser triggers.
Fig. 2
Fig. 2 Detailed view of the new setup. PBS: polarising beam splitter, Piezo: Piezo-controlled mirror, ZnSe: Zinc selenide wedge, PEM: Photo elastic modulator, PM: off axis parabolic mirror, SM: spherical mirror, HWP: Zero-order half wave-plate.
Fig. 3
Fig. 3 Spectral interferograms S0 and Sα recorded with crossed polarizers (a) and a slightly tilted analyzer (b), α = 1°. Amplitudes correspond to differential absorption (mOD). Red: [Ni((−)-sparteine)]Cl2, blue: [Ni((+)-sparteine)]Cl2, green: CDCl3 solvent background. The path difference between the two arms of the interferometer was ≈ 450 fs. Corresponding VCD (c) and VORD (d) spectra computed using Eqs. (8) and (12).
Fig. 4
Fig. 4 S0 spectra of [Ni((−)-sparteine)]Cl2 near interferometer delay τ = 0, raised in four steps of Δτ = 2.11 fs, corresponding to 0.22λIR/c.
Fig. 5
Fig. 5 Transient LD and LB signals of [Re(py)(CO)3(bpy)] dissolved in acetonitrile with 400 nm excitation. (a) LD measurement with only one IR beam and the analyzer at ±12° (b) LD (in phase signal) and (c) LB (out of phase signal) obtained by spectral interferometry as described in the text (τ =150 fs, 1 contour level= 0.5 mOD). The 400 nm beam was polarized at 45° with respect to LO and signal generating field. (d) Out of phase signal with vertical pump polarization (1 contour level= 20 μOD), where only chiral signals (transient VCD) should be seen. e) Horizontal cuts along the orange, green and red lines (20 ps pump-probe delay) in b, c and d.
Fig. 6
Fig. 6 (a) Beam propagation through modulator in front of lens (f = 100 mm). (b) Beam propagation with modulator in convergent beam 50 mm behind the lens. (c) and (d) show the corresponding Gaussian beam width wf ≈ 0.6 FWHM near the focus for the unmodulated beam (blue), retarded beam (red) and negatively retarded beam (green). Parameters: w0 = 4 mm, f = 100 mm, l = 1.5875 mm, λ = 6μm, n0 = 2.4, k = 2.

Tables (1)

Tables Icon

Table 1 Dominant contributions to the in-phase and out-of phase transient signals in a crossed polarizer setup for different orientations of the pump-pulse polarization. The factor ln(10)/4 ≈ 0.58 for α in radians or 180 ln(10)/(4π) ≈ 32.98 for α in degrees is due to the different units used in absorption and rotation angle measurements.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

e κ L 2 i ρ L ( 1 δ L 2 i η L 4 δ L 2 + i η L 4 1 )
E S = e κ L 2 i ρ L ( δ L / 2 + i η L / 4 ) E 0 e y
E LO = A ( ω ) e i ψ ( ω , τ ) e y
S 0 = Δ A + Δ A = log | E LO + E S | 2 | E LO E S | 2 4 ln ( 10 ) Re [ E S * E LO ] | E LO | 2 = 4 e κ L / 2 E 0 A ( ω ) ln ( 10 ) | A ( ω ) | 2 Re [ e i ρ L ( δ L 2 + i η L 4 e i ψ ) ]
e i ψ circ = i e i ρ L A circ ( ω ) = e κ L / 2 E 0
S α = log | E LO + e κ L 2 + i ρ L E 0 α | 2 | E LO e κ L 2 + i ρ L E 0 α | 2 4 α e κ L / 2 E 0 A ( ω ) ln ( 10 ) | A ( ω ) | 2 Re [ e i ρ L e i ψ ]
S 0 S ˜ 0 = 4 e κ L / 2 E 0 A ( ω ) ln ( 10 ) | A ( ω ) | 2 ( δ L 2 + i η L 4 ) e i ψ e i ρ L S α S ˜ α = 4 e κ L / 2 E 0 A ( ω ) ln ( 10 ) | A ( ω ) | 2 α e i ψ e i ρ L
S ˜ 0 = F [ θ ( t ) F 1 { S 0 } ]
S ˜ α = F [ θ ( t ) F 1 { S α } ]
S out of phase = Im [ S ˜ 0 / S ˜ α ] = η L 4 α
S in phase = Re [ S ˜ 0 / S ˜ α ] = δ L 2 α
Δ A VCD [ OD ] = η L ln ( 10 ) = 4 α [ rad ] ln ( 10 ) S out of phase
VORD [ rad ] = δ L 2 = α [ rad ] S in phase
Δ S out of phase = Im [ S ˜ 0 pump on S ˜ α ] Im [ S ˜ 0 pump off S ˜ α ]
Δ S in phase = Re [ S ˜ 0 pump on S ˜ α ] Re [ S ˜ 0 pump off S ˜ α ]
( X + Y ) ( X + Y ) X Y = X X X Y + Y Y X Y + X Y X Y + Y X X Y
e κ L 2 i ρ L ( 1 a / 2 Δ κ 4 L i Δ ρ L Δ κ 4 L i Δ ρ L 1 a / 2 )
E S achiral = e κ L 4 i ρ L ( Δ κ L / 4 i Δ ρ L ) E 0 e y
Δ S out of phase = Δ ρ L α = LB [ rad ] α [ rad ]
Δ S in phase = Δ κ L 4 α = LD [ OD ] α [ rad ] ln ( 10 ) 4
M = ( A B C D )
q out = A q in + B C q in + D
1 q = 1 R i λ π w 0 2
cos ( π x / d ) 1 π 2 2 d 2 x 2 .
M duct = ( cos ( γ l ) sin ( γ l ) γ n 0 γ n 0 sin ( γ l ) cos ( γ l ) )
δ n = 1 2 k λ l ,
n 2 = π 2 2 d 2 k λ l .
γ l = π 1 2 k n 0 λ l d 2 1
M PEM ( 1 l n 0 n 2 l 1 ) = ( 1 l n 0 ± π 2 2 d 2 k λ 1 )
f PEM = 1 ln 2 = ± 2 d 2 k π 2 λ
w f 2 = λ π / Im [ 1 q ] = f 2 λ 2 w 0 2 π 2 ( 1 + π 2 w 0 4 λ 2 f PEM 2 ) = w f 0 2 ( 1 + π 6 w 0 4 4 d 4 k 2 ) ,

Metrics