Abstract

We describe a new technique based on the use of a high-resolution quadri-wave lateral shearing interferometer to perform quantitative linear retardance and birefringence measurements on biological samples. The system combines quantitative phase images with varying polarization excitation to create retardance images. This technique is compatible with living samples and gives information about the local retardance and structure of their anisotropic components. We applied our approach to collagen fibers leading to a birefringence value of (3.4 ± 0.3) · 10−3 and to living cells, showing that cytoskeleton can be imaged label-free.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells

Pierre Bon, Guillaume Maucort, Benoit Wattellier, and Serge Monneret
Opt. Express 17(15) 13080-13094 (2009)

MultiFocus Polarization Microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously

Sara Abrahamsson, Molly McQuilken, Shalin B. Mehta, Amitabh Verma, Johannes Larsch, Rob Ilic, Rainer Heintzmann, Cornelia I. Bargmann, Amy S. Gladfelter, and Rudolf Oldenbourg
Opt. Express 23(6) 7734-7754 (2015)

Quantitative polarized phase microscopy for birefringence imaging

Nicoleta M. Dragomir, Xiao M. Goh, Claire L. Curl, Lea. M. D. Delbridge, and Ann Roberts
Opt. Express 15(26) 17690-17698 (2007)

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [Crossref]
  2. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [Crossref] [PubMed]
  3. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
    [Crossref] [PubMed]
  4. P. Bon, J. Savatier, M. Merlin, B. Wattellier, and S. Monneret, “Optical detection and measurement of living cell morphometric features with single-shot quantitative phase microscopy,” J. Biomed. Opt. 17(7), 076004 (2012).
    [Crossref] [PubMed]
  5. M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. USA, 108, 13124–13129 (2011).
    [Crossref]
  6. P. Girshovitz and N. T. Shaked, “Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization,” Biomed. Opt. Express 3(8), 1757–1773 (2012).
    [Crossref] [PubMed]
  7. T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nat. Meth. 11, 1221–1228 (2014).
    [Crossref]
  8. M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34, 79–81 (2009).
    [Crossref]
  9. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
    [Crossref]
  10. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–117 (2013).
    [Crossref]
  11. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
    [Crossref] [PubMed]
  12. P. Bon, S. Aknoun, S. Monneret, and B. Wattellier, “Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination,” Opt. Express 22, 8654–8671 (2014).
    [Crossref] [PubMed]
  13. R. Oldenbourg, E. Salmon, and P. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
    [Crossref] [PubMed]
  14. F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
    [Crossref] [PubMed]
  15. S. Sugita and T. Matsumoto, “Quantitative measurement of the distribution and alignment of collagen fibers in unfixed aortic tissues,” J. Biomech. 46, 1403–1407 (2013).
    [Crossref] [PubMed]
  16. H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Meth. 174, 82–90 (2008).
    [Crossref]
  17. C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
    [Crossref] [PubMed]
  18. A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. D. Martino, “Ex-vivo characterization of human colon cancer by mueller polarimetric imaging,” Opt. Express 19, 1582–1593 (2011).
    [Crossref] [PubMed]
  19. M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221–1232 (2011).
    [Crossref] [PubMed]
  20. C.E. Goldstein and H. Dennis, Polarized Light, Dennis Goldstein, ed. (CRC Press, 2003).
  21. S.-Y. Lu and R. A. Chipman, “Interpretation of mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
    [Crossref]
  22. C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31(12), 896–901 (2004).
    [Crossref]
  23. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20, 9948–9955 (2012).
    [Crossref] [PubMed]
  24. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33, 1270–1272 (2008).
    [Crossref] [PubMed]
  25. T. Tahara, Y. Awatsuji, Y. Shimozato, T. Kakue, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Single-shot polarization-imaging digital holography based on simultaneous phase-shifting interferometry,” Opt. Lett. 36, 3254–3256 (2011).
    [Crossref] [PubMed]
  26. S.-Y. Lu and R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994).
    [Crossref]
  27. N. M. Dragomir, X. M. Goh, C. L. Curl, L. M. D. Delbridge, and A. Roberts, “Quantitative polarized phase microscopy for birefringence imaging,” Opt. Express 15, 17690–17698 (2007).
    [Crossref] [PubMed]
  28. N. Dragomir and A. Roberts, “Orientation independent retardation imaging using quantitative polarized phase microscopy,” Microsc. Res. Tech. 75(10), 1416–1419 (2012).
    [Crossref] [PubMed]
  29. I. H. Shin, S.-M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
    [Crossref] [PubMed]
  30. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
    [Crossref] [PubMed]
  31. J. Primot and N. Guérineau, “Extended hartmann test based on the pseudoguiding property of a hartmann mask completed by a phase chessboard,” Appl. Opt. 39, 5715–5720 (2000).
    [Crossref]
  32. P. Bon, S. Monneret, and B. Wattellier, “Noniterative boundary-artifact-free wavefront reconstruction from its derivatives,” Appl. Opt. 51, 5698–5704 (2012).
    [Crossref] [PubMed]
  33. P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
    [Crossref] [PubMed]
  34. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941).
    [Crossref]
  35. D. A. Lauffenburger and A. F. Horwitz, “Cell migration: A physically integrated molecular process,” Cell 84(3), 359–369 (1996).
    [Crossref] [PubMed]
  36. H. Lodish and A. Berk, Molecular Cell Biology, 4th ed. (W. H. Freeman, 2000)
  37. A. Bhattacharjee and M. Bansal, “Collagen structure: the madras triple helix and the current scenario,” IUBMB Life 57(3), 161–172 (2005).
    [Crossref] [PubMed]
  38. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [Crossref] [PubMed]
  39. J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
    [Crossref]

2014 (3)

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nat. Meth. 11, 1221–1228 (2014).
[Crossref]

P. Bon, S. Aknoun, S. Monneret, and B. Wattellier, “Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination,” Opt. Express 22, 8654–8671 (2014).
[Crossref] [PubMed]

P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
[Crossref] [PubMed]

2013 (3)

S. Sugita and T. Matsumoto, “Quantitative measurement of the distribution and alignment of collagen fibers in unfixed aortic tissues,” J. Biomech. 46, 1403–1407 (2013).
[Crossref] [PubMed]

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–117 (2013).
[Crossref]

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (4)

T. Tahara, Y. Awatsuji, Y. Shimozato, T. Kakue, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Single-shot polarization-imaging digital holography based on simultaneous phase-shifting interferometry,” Opt. Lett. 36, 3254–3256 (2011).
[Crossref] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. USA, 108, 13124–13129 (2011).
[Crossref]

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. D. Martino, “Ex-vivo characterization of human colon cancer by mueller polarimetric imaging,” Opt. Express 19, 1582–1593 (2011).
[Crossref] [PubMed]

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221–1232 (2011).
[Crossref] [PubMed]

2010 (1)

I. H. Shin, S.-M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (4)

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref] [PubMed]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33, 1270–1272 (2008).
[Crossref] [PubMed]

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Meth. 174, 82–90 (2008).
[Crossref]

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

2007 (2)

N. M. Dragomir, X. M. Goh, C. L. Curl, L. M. D. Delbridge, and A. Roberts, “Quantitative polarized phase microscopy for birefringence imaging,” Opt. Express 15, 17690–17698 (2007).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

2006 (1)

2005 (2)

2004 (1)

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31(12), 896–901 (2004).
[Crossref]

2003 (1)

F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

2000 (1)

1999 (1)

1998 (1)

R. Oldenbourg, E. Salmon, and P. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

1996 (2)

S.-Y. Lu and R. A. Chipman, “Interpretation of mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
[Crossref]

D. A. Lauffenburger and A. F. Horwitz, “Cell migration: A physically integrated molecular process,” Cell 84(3), 359–369 (1996).
[Crossref] [PubMed]

1994 (1)

1989 (1)

1941 (1)

Aknoun, S.

Allman, B. E.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31(12), 896–901 (2004).
[Crossref]

Antonelli, M.-R.

Awatsuji, Y.

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Bansal, M.

A. Bhattacharjee and M. Bansal, “Collagen structure: the madras triple helix and the current scenario,” IUBMB Life 57(3), 161–172 (2005).
[Crossref] [PubMed]

Bashir, R.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. USA, 108, 13124–13129 (2011).
[Crossref]

Bednarz, M.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. USA, 108, 13124–13129 (2011).
[Crossref]

Bellair, C. J.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31(12), 896–901 (2004).
[Crossref]

Benali, A.

Berk, A.

H. Lodish and A. Berk, Molecular Cell Biology, 4th ed. (W. H. Freeman, 2000)

Bevilacqua, F.

Bhattacharjee, A.

A. Bhattacharjee and M. Bansal, “Collagen structure: the madras triple helix and the current scenario,” IUBMB Life 57(3), 161–172 (2005).
[Crossref] [PubMed]

Bista, M.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Bolin, F. P.

Bon, P.

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–117 (2013).
[Crossref]

Bradke, F.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Chipman, R. A.

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Conklin, M. W.

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221–1232 (2011).
[Crossref] [PubMed]

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–117 (2013).
[Crossref]

Crevenna, A. H.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Cuche, E.

Curl, C. L.

N. M. Dragomir, X. M. Goh, C. L. Curl, L. M. D. Delbridge, and A. Roberts, “Quantitative polarized phase microscopy for birefringence imaging,” Opt. Express 15, 17690–17698 (2007).
[Crossref] [PubMed]

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31(12), 896–901 (2004).
[Crossref]

Dasari, R. R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref] [PubMed]

Debailleul, M.

Delbridge, L. M.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31(12), 896–901 (2004).
[Crossref]

Delbridge, L. M. D.

Dennis, H.

C.E. Goldstein and H. Dennis, Polarized Light, Dennis Goldstein, ed. (CRC Press, 2003).

Depeursinge, C.

Dragomir, N.

N. Dragomir and A. Roberts, “Orientation independent retardation imaging using quantitative polarized phase microscopy,” Microsc. Res. Tech. 75(10), 1416–1419 (2012).
[Crossref] [PubMed]

Dragomir, N. M.

Eickhoff, J. C.

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221–1232 (2011).
[Crossref] [PubMed]

Eliceiri, K. W.

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221–1232 (2011).
[Crossref] [PubMed]

Emery, Y.

Fan, C.

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Feld, M. S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref] [PubMed]

Ference, R. J.

Fort, E.

P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
[Crossref] [PubMed]

Friedl, A.

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221–1232 (2011).
[Crossref] [PubMed]

Gayet, B.

Georges, V.

Gillette, M. U.

Girshovitz, P.

Goh, X. M.

Golding, I.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. USA, 108, 13124–13129 (2011).
[Crossref]

Goldstein, C.E.

C.E. Goldstein and H. Dennis, Polarized Light, Dennis Goldstein, ed. (CRC Press, 2003).

Guérineau, N.

Haeberlé, O.

Harris, P. J.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31(12), 896–901 (2004).
[Crossref]

Holak, T. A.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Horwitz, A. F.

D. A. Lauffenburger and A. F. Horwitz, “Cell migration: A physically integrated molecular process,” Cell 84(3), 359–369 (1996).
[Crossref] [PubMed]

Ikeda, T.

Iseki, H.

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Meth. 174, 82–90 (2008).
[Crossref]

Jang, J.

Jenne, D.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Jeong, J.

Jones, R. C.

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–117 (2013).
[Crossref]

Juskaitis, R.

F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Kakue, T.

Kawakami, Y.

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Meth. 174, 82–90 (2008).
[Crossref]

Keely, P. J.

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221–1232 (2011).
[Crossref] [PubMed]

Kemper, B.

Kessenbrock, K.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Kim, D. Y.

I. H. Shin, S.-M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
[Crossref] [PubMed]

Kim, M. W.

Kim, Y.

Kouyama, N.

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Meth. 174, 82–90 (2008).
[Crossref]

Kubota, T.

Lauffenburger, D. A.

D. A. Lauffenburger and A. F. Horwitz, “Cell migration: A physically integrated molecular process,” Cell 84(3), 359–369 (1996).
[Crossref] [PubMed]

Lécart, S.

P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
[Crossref] [PubMed]

Lévêque-Fort, S.

P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
[Crossref] [PubMed]

Lodish, H.

H. Lodish and A. Berk, Molecular Cell Biology, 4th ed. (W. H. Freeman, 2000)

Lu, S.-Y.

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Magistretti, P.

Marquet, P.

Martino, A. D.

Massoumian, F.

F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Matoba, O.

Matsumoto, T.

S. Sugita and T. Matsumoto, “Quantitative measurement of the distribution and alignment of collagen fibers in unfixed aortic tissues,” J. Biomech. 46, 1403–1407 (2013).
[Crossref] [PubMed]

Maucort, G.

Merlin, M.

P. Bon, J. Savatier, M. Merlin, B. Wattellier, and S. Monneret, “Optical detection and measurement of living cell morphometric features with single-shot quantitative phase microscopy,” J. Biomed. Opt. 17(7), 076004 (2012).
[Crossref] [PubMed]

Millet, L. J.

Mir, M.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. USA, 108, 13124–13129 (2011).
[Crossref]

Monneret, S.

Morin, R.

Muragaki, Y.

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Meth. 174, 82–90 (2008).
[Crossref]

Nakaji, H.

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Meth. 174, 82–90 (2008).
[Crossref]

Neil, M. A. A.

F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Neukirchen, D.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Nishio, K.

Novikova, T.

Nugent, K. A.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31(12), 896–901 (2004).
[Crossref]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Oldenbourg, R.

R. Oldenbourg, E. Salmon, and P. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

Park, Y.

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–117 (2013).
[Crossref]

Pehlke, C. A.

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221–1232 (2011).
[Crossref] [PubMed]

Pierangelo, A.

Popescu, G.

Prasanth, S. G.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. USA, 108, 13124–13129 (2011).
[Crossref]

Preuss, L. E.

Primot, J.

Provenzano, P. P.

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221–1232 (2011).
[Crossref] [PubMed]

Rappaz, B.

Riching, K. M.

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221–1232 (2011).
[Crossref] [PubMed]

Riedl, J.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Roberts, A.

N. Dragomir and A. Roberts, “Orientation independent retardation imaging using quantitative polarized phase microscopy,” Microsc. Res. Tech. 75(10), 1416–1419 (2012).
[Crossref] [PubMed]

N. M. Dragomir, X. M. Goh, C. L. Curl, L. M. D. Delbridge, and A. Roberts, “Quantitative polarized phase microscopy for birefringence imaging,” Opt. Express 15, 17690–17698 (2007).
[Crossref] [PubMed]

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31(12), 896–901 (2004).
[Crossref]

Salmon, E.

R. Oldenbourg, E. Salmon, and P. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

Savatier, J.

P. Bon, J. Savatier, M. Merlin, B. Wattellier, and S. Monneret, “Optical detection and measurement of living cell morphometric features with single-shot quantitative phase microscopy,” J. Biomed. Opt. 17(7), 076004 (2012).
[Crossref] [PubMed]

Shaked, N. T.

Shen, Z.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. USA, 108, 13124–13129 (2011).
[Crossref]

Shimozato, Y.

Shin, I. H.

I. H. Shin, S.-M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
[Crossref] [PubMed]

Shin, S.-M.

I. H. Shin, S.-M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
[Crossref] [PubMed]

Simon, B.

Sixt, M.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Sugita, S.

S. Sugita and T. Matsumoto, “Quantitative measurement of the distribution and alignment of collagen fibers in unfixed aortic tissues,” J. Biomech. 46, 1403–1407 (2013).
[Crossref] [PubMed]

Tahara, T.

Taylor, R. C.

Teitell, M. A.

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nat. Meth. 11, 1221–1228 (2014).
[Crossref]

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–117 (2013).
[Crossref]

Tran, P.

R. Oldenbourg, E. Salmon, and P. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

Ura, S.

Validire, P.

von Bally, G.

Wang, Z.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. USA, 108, 13124–13129 (2011).
[Crossref]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33, 1270–1272 (2008).
[Crossref] [PubMed]

Wattellier, B.

Wedlich-Soldner, R.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Werb, Z.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Wilson, T.

F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Yao, G.

Yu, J. H.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

Zangle, T. A.

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nat. Meth. 11, 1221–1228 (2014).
[Crossref]

Am. J. Pathol. (1)

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221–1232 (2011).
[Crossref] [PubMed]

Appl. Opt. (4)

Biomed. Opt. Express (2)

Biophys. J. (2)

R. Oldenbourg, E. Salmon, and P. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
[Crossref] [PubMed]

Cell (1)

D. A. Lauffenburger and A. F. Horwitz, “Cell migration: A physically integrated molecular process,” Cell 84(3), 359–369 (1996).
[Crossref] [PubMed]

Clin. Exp. Pharmacol. Physiol. (1)

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31(12), 896–901 (2004).
[Crossref]

IUBMB Life (1)

A. Bhattacharjee and M. Bansal, “Collagen structure: the madras triple helix and the current scenario,” IUBMB Life 57(3), 161–172 (2005).
[Crossref] [PubMed]

J. Biomech. (1)

S. Sugita and T. Matsumoto, “Quantitative measurement of the distribution and alignment of collagen fibers in unfixed aortic tissues,” J. Biomech. 46, 1403–1407 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

P. Bon, J. Savatier, M. Merlin, B. Wattellier, and S. Monneret, “Optical detection and measurement of living cell morphometric features with single-shot quantitative phase microscopy,” J. Biomed. Opt. 17(7), 076004 (2012).
[Crossref] [PubMed]

I. H. Shin, S.-M. Shin, and D. Y. Kim, “New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells,” J. Biomed. Opt. 15(1), 016028 (2010).
[Crossref] [PubMed]

J. Microsc. (1)

F. Massoumian, R. Juskaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

J. Neurosci. Meth. (1)

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Meth. 174, 82–90 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Microsc. Res. Tech. (1)

N. Dragomir and A. Roberts, “Orientation independent retardation imaging using quantitative polarized phase microscopy,” Microsc. Res. Tech. 75(10), 1416–1419 (2012).
[Crossref] [PubMed]

Nat. Meth. (3)

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner, “Lifeact: a versatile marker to visualize f-actin,” Nat. Meth. 5, 605–607 (2008).
[Crossref]

T. A. Zangle and M. A. Teitell, “Live-cell mass profiling: an emerging approach in quantitative biophysics,” Nat. Meth. 11, 1221–1228 (2014).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Nat. Photon. (1)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113–117 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Proc. Natl. Acad. Sci. USA, (1)

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. USA, 108, 13124–13129 (2011).
[Crossref]

Other (2)

C.E. Goldstein and H. Dennis, Polarized Light, Dennis Goldstein, ed. (CRC Press, 2003).

H. Lodish and A. Berk, Molecular Cell Biology, 4th ed. (W. H. Freeman, 2000)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic view presenting the interest of introducing polarized light into QPI.

Fig. 2
Fig. 2

Illustration of the polarization dependent OPD measurement principle. (a) Schematic representations of the different axes systems and (b) the OPD variation with the light polarization orientation with respect to an initial value for an anisotropic object. E⃗in is the incident electric field vector, O.A. refers to the sample optical axis, (x,y,z) is the main axis system, e and o indices refer to respectively extraordinary and ordinary, ‖ and ⊥ indices refer respectively to parallel and perpendicular axis respectively to the incident electric field. Δn is the local retardance, t the mechanical thickness and θ0 is the orientation of the sample optical axis in the main axis system.

Fig. 3
Fig. 3

Representation of normalised intensity along parallel and perpendicular directions in function of θ.

Fig. 4
Fig. 4

Illustration of the post processing principle of the (a) OPD polarized stack of images in order to create numerically two images of (b) retardance and (c) orientation dependant contrast.

Fig. 5
Fig. 5

(a) Results of retardance measurements calculated for retardance values from 0 to 3 μm by using 6 polarization angles to constitute the requested set of OPD images that are post-processed to determine the retardance. (b) Absolute measurement error calculated for retardance values from 0 to 3 μm with N=6. (c) Normalised OPD for different retardance values and (d) Absolute error on θ0 versus the theoretical retardance with N=6 or N=18 polarization angles.

Fig. 6
Fig. 6

Experimental setup scheme.

Fig. 7
Fig. 7

(a) OPD spatial standard deviation from a sample empty area, versus the number of averaged successive acquisitions. 80 times magnification, NA=1.3. Exposure time = 15 ms. (b) OPD histogram evolution with the number of averaged acquisitions.

Fig. 8
Fig. 8

(a, c & e) Distribution of OPD values of empty sample areas. The three OPD images recovered from interferogrames acquired in an sample-free region respectively at (b) 0, (d) 60 and (f) 90° polarization angles are associated with a unique reference interferogram taken at 0° polarization angle. The standard deviation value of the pixels is calculated and we can see that its maximal value is reached for the association of reference taken at 0° and image taken at 90° polarisation angles. Scale bar represents 6 μm. (NA=1.3 ×80 magnification observation, exposure time = 25 ms.)

Fig. 9
Fig. 9

Collagen fibers. (a) OPD, (b) retardance Δδ, (c) profile along the red line on (a) and (d) & (e) orientation contrast images. Scale bar represents 5 μm. Imaging: NA=1.3, 80× magnification observation. Exposure time = 50 ms. Total acquisition time = 15 s.

Fig. 10
Fig. 10

(a) OPD and (b) retardance Δδ, (a1, a2) crop and magnification following the rectangles 1 & 2 of (a), retardance (b1, b2) Δδ, and (c1, c2) orientation of the area between dotted rectangles of images (b1) and (b2). Scale bar represents 6 μm. Imaging: NA=1.3, 200× magnification. Exposure time = 70 ms. Total acquisition time = 10 s.

Fig. 11
Fig. 11

Living HT1080 Lifeact cell with GFP F-actin labelling. (a) OPD, (b) retardance Δδ, (c) fluorescence and (d) composite images of (b)&(c). Scale bar represents μm. Imaging: NA=1.3, 200× magnification. Exposure time = 70 ms. Total acquisition time = 10 s.

Tables (1)

Tables Icon

Table 1 Quantitative results on collagen fibers.

Equations (59)

Equations on this page are rendered with MathJax. Learn more.

I meas = I 0 [ 1 + cos ( 2 π p ( x z OPD x ) ) ]
OPD meas x = p 2 π z arg [ 𝒯 1 [ 𝒯 ( I meas ) δ ( k 1 p ) ] ] .
OPD = 0 t ( n ( θ ) n medium ) d z
I x = I 0 x [ 1 + cos ( 2 π p ( x z OPD x x ) ) ]
I y = I 0 y [ 1 + cos ( 2 π p ( x z OPD y x ) ) ]
I tot = I 0 x + I 0 y + 1 2 [ exp ( 2 i π x p ) ( I 0 x exp ( 2 i π z p OPD x x ) + I 0 y exp ( 2 i π z p OPD y x ) ) + exp ( 2 i π x p ) ( I 0 x exp ( 2 i π z p OPD x x ) + I 0 y exp ( 2 i π z p OPD y x ) ) ] .
𝒯 ( I tot ) = 𝒯 ( I 0 x + I 0 y ) + 1 2 δ ( k 1 p ) 𝒯 [ I 0 x exp ( 2 i π z p OPD x x ) + I 0 y exp ( 2 i π z p OPD y x ) ] + C . C
OPD meas = 1 α arg ( I x e i α OPD x + I y e i α OPD y )
e i α ( OPD x + OPD y ) 2 ( I x e i α ( OPD x + OPD y ) 2 + I y e i α ( OPD x + OPD y ) 2 ) .
e i α ( OPD x + OPD y ) 2 [ ( I x + I y ) cos ( α ( OPD x OPD y ) 2 ) + i ( I x I y ) sin α ( OPD x OPD y ) 2 ]
OPD meas = ( OPD x + OPD y ) 2 + 1 α arctan ( I x I y I x + I y tan ( ( α OPD x α OPD y ) / 2 ) )
OPD meas I x OPD x + I y OPD y I x + I y .
E out = ( J ) E in
( J ) = ( R ( θ θ 0 ) ) ( J sample ) ( R ( θ θ 0 ) )
R ( θ θ 0 ) = ( cos ( θ θ 0 ) sin ( θ θ 0 ) sin ( θ θ 0 ) cos ( θ θ 0 ) )
( J sample ) = ( e i k δ o 0 0 e i k δ e )
( J ) = ( α + β 2 ) ( 1 0 0 1 ) + ( α β 2 ) ( cos 2 ( θ θ 0 ) sin 2 ( θ θ 0 ) sin 2 ( θ θ 0 ) cos 2 ( θ θ 0 ) )
E out = [ ( α + β 2 ) ( 1 0 ) + ( α β 2 ) ( cos 2 ( θ θ 0 ) sin 2 ( θ θ 0 ) ) ] E in
E out = E in e i k ( δ o + δ e ) 2 [ ( cos ( k Δ δ 2 ) + i sin ( k Δ δ 2 ) cos 2 ( θ θ 0 ) ) u + ( i sin ( k Δ δ 2 ) sin 2 ( θ θ 0 ) ) u ]
I out = I 0 [ cos 2 ( k Δ δ 2 ) + sin 2 ( k Δ δ 2 ) cos 2 ( 2 ( θ θ 0 ) ) ] .
I out = I 0 [ 1 1 2 sin 2 ( k Δ δ 2 ) ( 1 cos ( 4 ( θ θ 0 ) ) ) ] .
E out = E in e i k ( δ o + δ e ) 2 ( cos ( k Δ δ 2 ) + i sin ( k Δ δ 2 ) cos 2 ( θ θ 0 ) ) u .
OPD measured ( θ ) = ( δ o + δ e ) 2 + ( Δ δ 2 ) cos 2 ( θ θ 0 ) .
OPD ( θ ) = A + B cos ( 2 θ ) + C sin ( 2 θ )
OPD meas = ( OPD x + OPD y ) 2 + 1 α arctan ( I x I y I x + I y tan ( ( α OPD x α OPD y / 2 ) )
S = arctan ( 1 κ 1 + κ ( Δ + Δ 3 3 ) ) + o ( Δ 3 ) .
S 1 κ 1 + κ ( Δ + Δ 3 3 ) 1 3 ( 1 κ 1 + κ ) 3 ( Δ Δ 3 3 ) 3 + o ( Δ 3 )
S ( 1 κ 1 + κ ) Δ [ 1 + Δ 2 3 [ ( 1 ( 1 κ 1 + κ ) 2 ] ] + o ( Δ 3 )
OPD measured ( OPD + OPD ) 2 + ( I I I + I ) Δ
OPD measured I OPD + I OPD I + I .
Δ 2 3 ( ( 1 + κ ) 2 ( 1 κ ) 2 ( 1 + κ ) 2 ) < < 1
Δ 2 3 ( 4 κ ( 1 + κ ) 2 ) < < 1 .
Δ 2 < < 3 4 ( 1 + κ ) 2 κ .
1 / 2 ( α ( OPD OPD ) ) < < 3 .
OPD OPD < < 3 p π z .
( 1 κ ) ( 1 + κ ) = 1 2 κ + o ( κ ) ,
S = arctan ( 1 κ 1 + κ tan Δ ) = arctan ( tan Δ 2 κ tan Δ + o ( κ ) ) .
S = Δ 2 κ ( tan Δ 1 + tan 2 Δ ) .
S = Δ κ sin 2 Δ .
OPD meas = OPD ,
OPD meas = OPD .
OPD > > I I sin ( OPD OPD ) .
E out = E in e i k ( δ o + δ e ) 2 ( cos ( k Δ δ 2 ) + i sin ( k Δ δ 2 ) cos 2 ( θ θ 0 ) ) u .
OPD out = 1 k arg ( E out ) = δ o + δ e 2 + 1 k arctan ( tan k Δ δ 2 cos 2 ( θ θ 0 ) ) .
OPD out = δ o + δ e 2 + cos 2 ( θ θ 0 ) ( k Δ δ 2 + 1 3 ( k Δ δ 2 ) 3 ) 1 3 cos 3 2 ( θ θ 0 ) ( k Δ δ 2 ) 3 + o ( k Δ δ 2 ) 3 ,
OPD out = δ o + δ e 2 + cos 2 ( θ θ 0 ) ( k Δ δ 2 + 1 12 ( k Δ δ 2 ) 3 ) 1 12 cos 6 ( θ θ 0 ) ( k Δ δ 2 ) 3 + o ( k Δ δ 2 ) 3 .
OPD out = δ o + δ e 2 + ( Δ δ 2 + π 2 λ 2 Δ δ 3 96 ) cos ( 2 ( θ θ 0 ) ) ( π 2 λ 2 Δ δ 3 96 ) cos ( 6 ( θ θ 0 ) ) .
OPD measured ( θ ) = ( δ o + δ e ) 2 + ( Δ δ 2 ) cos 2 ( θ θ 0 ) .
OPD > > I I sin ( OPD OPD )
{ OPD = ( δ o + δ e ) 2 + ( Δ δ 2 ) cos 2 ( θ θ 0 ) , OPD = ( δ o + δ e ) 2 + π 2 , OPD OPD = ( Δ δ 2 ) cos 2 ( θ θ 0 ) π 2 ,
{ I x = cos 2 ( k Δ δ 2 ) + sin 2 ( k Δ δ 2 ) sin 2 2 ( θ θ 0 ) , I y = sin 2 ( k Δ δ 2 ) sin 2 2 ( θ θ 0 ) .
{ I 1 I 1 , I k 2 Δ δ 2 4 sin 2 2 ( θ θ 0 ) ,
k 2 Δ δ 2 4 ( Δ δ ) 2 < < OPD .
k 2 Δ δ 2 8 Δ δ L B < < δ ¯ L OPD .
( Δ δ δ ¯ ) 3 < < 8 k 2 δ ¯ 2 .
( Δ δ δ ¯ ) < < 2 λ 2 π 2 δ ¯ 2 3
Δ δ δ ¯ = Δ n × e n ¯ × e = Δ n n
Δ n n ¯ < < 2 π 2 3 ( λ δ ¯ ) 2 / 3 .
Δ n n ¯ < < 0.1

Metrics