Abstract

We numerically study the characteristics of optical rogue waves in the femtosecond supercontinuum (SC) generation and use the CW triggering mechanism to control the SC generation. Detailed simulation results show for the first time that a weak CW trigger can manipulate the behaviors of optical rogue waves in the femtosecond SC regime. For the proposed CW triggering technique which requires only wavelength tuning and is a handy approach for the active control of SC, the resultant spectrum can be greatly broadened, and the noise properties of the SC can be significantly improved in terms of both of the coherence and intensity stability.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation

Qian Li, Feng Li, Kenneth K. Y. Wong, Alan Pak Tao Lau, Kevin K. Tsia, and P. K. A. Wai
Opt. Express 19(15) 13757-13769 (2011)

Harnessing and control of optical rogue waves in supercontinuum generation

John. M. Dudley, Goëry Genty, and Benjamin J. Eggleton
Opt. Express 16(6) 3644-3651 (2008)

Harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fiber

Saili Zhao, Hua Yang, Chujun Zhao, and Yuzhe Xiao
Opt. Express 25(7) 7192-7202 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  2. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27(22), 2010–2012 (2002).
    [Crossref] [PubMed]
  3. B. Washburn and N. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12(10), 2166–2175 (2004).
    [Crossref] [PubMed]
  4. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
    [Crossref]
  5. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  6. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
    [Crossref] [PubMed]
  7. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
    [Crossref] [PubMed]
  8. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29(10), 2875–2885 (2012).
    [Crossref]
  9. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
    [Crossref] [PubMed]
  10. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011).
    [Crossref] [PubMed]
  11. Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011).
    [Crossref] [PubMed]
  12. O. Vanvincq, B. Barviau, A. Mussot, G. Bouwmans, Y. Quiquempois, and A. Kudlinski, “Significant reduction of power fluctuations at the long-wavelength edge of a supercontinuum generated in solid-core photonic bandgap fibers,” Opt. Express 18(23), 24352–24360 (2010).
    [Crossref] [PubMed]
  13. M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34(16), 2468–2470 (2009).
    [Crossref] [PubMed]
  14. M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue waves in femtosecond supercontinuum generation,” Proc. SPIE 7598, 75981D (2010).
  15. D. Türke, S. Pricking, A. Husakou, J. Teipel, J. Herrmann, and H. Giessen, “Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime,” Opt. Express 15(5), 2732–2741 (2007).
    [Crossref] [PubMed]
  16. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref] [PubMed]
  17. F. Lu and W. Knox, “Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,” Opt. Express 12(2), 347–353 (2004).
    [Crossref] [PubMed]
  18. G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
    [Crossref]
  19. M. Kues, N. Brauckmann, T. Walbaum, P. Groß, and C. Fallnich, “Nonlinear dynamics of femtosecond supercontinuum generation with feedback,” Opt. Express 17(18), 15827–15841 (2009).
    [Crossref] [PubMed]
  20. N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, “Noise reduction of supercontinua via optical feedback,” Opt. Express 19(16), 14763–14778 (2011).
    [Crossref] [PubMed]
  21. J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilites, Breathers and Rogue Waves in Optics,” Nat. Photonics 8(10), 755–764 (2014).
    [Crossref]
  22. D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
    [Crossref] [PubMed]

2014 (1)

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilites, Breathers and Rogue Waves in Optics,” Nat. Photonics 8(10), 755–764 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (3)

2010 (2)

2009 (4)

2008 (2)

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2004 (3)

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

F. Lu and W. Knox, “Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,” Opt. Express 12(2), 347–353 (2004).
[Crossref] [PubMed]

B. Washburn and N. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12(10), 2166–2175 (2004).
[Crossref] [PubMed]

2002 (2)

Akhmediev, N.

Bang, O.

Barviau, B.

Boppart, S. A.

Bouwmans, G.

Brauckmann, N.

Cheung, K. K. Y.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Combes, Y.

Davis, D. M.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Dias, F.

Dudley, J. M.

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilites, Breathers and Rogue Waves in Optics,” Nat. Photonics 8(10), 755–764 (2014).
[Crossref]

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
[Crossref] [PubMed]

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue waves in femtosecond supercontinuum generation,” Proc. SPIE 7598, 75981D (2010).

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[Crossref] [PubMed]

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34(16), 2468–2470 (2009).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Dunsby, C.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Eggleton, B. J.

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[Crossref] [PubMed]

Elson, D. S.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Erkintalo, M.

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilites, Breathers and Rogue Waves in Optics,” Nat. Photonics 8(10), 755–764 (2014).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue waves in femtosecond supercontinuum generation,” Proc. SPIE 7598, 75981D (2010).

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34(16), 2468–2470 (2009).
[Crossref] [PubMed]

Fallnich, C.

French, P. M. W.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Galletly, N.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Genty, G.

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilites, Breathers and Rogue Waves in Optics,” Nat. Photonics 8(10), 755–764 (2014).
[Crossref]

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
[Crossref] [PubMed]

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue waves in femtosecond supercontinuum generation,” Proc. SPIE 7598, 75981D (2010).

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34(16), 2468–2470 (2009).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Giessen, H.

Godin, T.

Groß, P.

Herrmann, J.

Husakou, A.

Jalali, B.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Kibler, B.

Knox, W.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Kudlinski, A.

Kues, M.

Lanigan, P. M. P.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Larger, L.

Larsen, C.

Lau, A. P. T.

Li, F.

Li, Q.

Lu, F.

Marks, D. L.

McCann, F.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

McGinty, J.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Merolla, J. M.

Møller, U.

Moselund, P. M.

Munro, I.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Mussot, A.

Neil, M. A. A.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Newbury, N.

Nguyen, D. M.

Oldenburg, A. L.

Onfelt, B.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Pricking, S.

Quiquempois, Y.

Requejo-Isidro, J.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Reynolds, J. J.

Ropers, C.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Solli, D. R.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Sørensen, S. T.

Sylvestre, T.

Teipel, J.

Thomsen, C. L.

Toenger, S.

Treanor, B.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Tsia, K. K.

Türke, D.

Vanvincq, O.

Wai, P. K. A.

Walbaum, T.

Washburn, B.

Wetzel, B.

Wong, K. K. Y.

Zhang, C.

Zhou, Y.

Appl. Phys. B (1)

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Nat. Photonics (1)

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilites, Breathers and Rogue Waves in Optics,” Nat. Photonics 8(10), 755–764 (2014).
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Opt. Express (9)

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[Crossref] [PubMed]

Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011).
[Crossref] [PubMed]

O. Vanvincq, B. Barviau, A. Mussot, G. Bouwmans, Y. Quiquempois, and A. Kudlinski, “Significant reduction of power fluctuations at the long-wavelength edge of a supercontinuum generated in solid-core photonic bandgap fibers,” Opt. Express 18(23), 24352–24360 (2010).
[Crossref] [PubMed]

D. Türke, S. Pricking, A. Husakou, J. Teipel, J. Herrmann, and H. Giessen, “Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime,” Opt. Express 15(5), 2732–2741 (2007).
[Crossref] [PubMed]

B. Washburn and N. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12(10), 2166–2175 (2004).
[Crossref] [PubMed]

F. Lu and W. Knox, “Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,” Opt. Express 12(2), 347–353 (2004).
[Crossref] [PubMed]

M. Kues, N. Brauckmann, T. Walbaum, P. Groß, and C. Fallnich, “Nonlinear dynamics of femtosecond supercontinuum generation with feedback,” Opt. Express 17(18), 15827–15841 (2009).
[Crossref] [PubMed]

N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, “Noise reduction of supercontinua via optical feedback,” Opt. Express 19(16), 14763–14778 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue waves in femtosecond supercontinuum generation,” Proc. SPIE 7598, 75981D (2010).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Comparisons between (a, b, c, d) untriggered SC and (e, f, g, h) CW triggered SC where the CW trigger is at 1130 nm. Spectra of (a) untriggered and (e) CW triggered SC where the individual spectrum from an ensemble of 1000 simulations is shown as the gray line (for clarity only 100 simulations are plotted) and the calculated average spectrum is shown as the black line; (b) and (f) expanded view of (a) and (e) above 1450 nm; The first-order temporal coherence of (c) untriggered and (g) CW triggered SC; Histogram of the peak power probability distribution of (d) untriggered and (h) CW triggered SC after a long-pass filter (>1430 nm) using 180 W bins.
Fig. 2
Fig. 2 Comparisons between (a, c) untriggered SC and (b, d) CW triggered SC where the CW wavelength is at 1130 nm. The temporal pulses corresponding to the long-wavelength edge of (a) untriggered and (b) CW triggered SC (for clarity, only 50 simulations are plotted); The SNR of (c) untriggered SC and (d) CW triggered SC.
Fig. 3
Fig. 3 False color representation of (a) untriggered SC and (b) CW triggered SC spectral evolution during the initial stage of propagation. The CW trigger wavelength is at 1130 nm. Initial random noise seed is fixed to isolate the effect of noise. (c) Untriggered SC and (d) CW triggered SC spectrum at selected distances of 0.025 m, 0.05 m, 0.075 m, 0.1 m, 0.5 m, 1 m (from bottom to top).
Fig. 4
Fig. 4 (a) Spectra and (b) coherence for CW triggers at different wavelengths where the specific CW wavelength at 1130 nm is plotted in black and the CW trigger wavelengths change every 20 nm in anomalous dispersion regime from 1030 nm to 1210 nm (from bottom to top); (c) Overall coherence and (d) overall SNR versus CW trigger wavelength where the specific CW wavelength at 1130 nm is marked by the cross symbol and specific view of CW triggers wavelengths from 1125 nm to 1135 nm (1 nm as interval) are shown in the inset.
Fig. 5
Fig. 5 (a) Spectra and (b) coherence for CW triggers at different wavelengths where the specific CW wavelength at 943 nm is plotted in black and the CW trigger wavelengths change every 20 nm in anomalous dispersion regime from 830 nm to 1010 nm (from bottom to top); (c) Overall coherence and (d) overall SNR versus CW trigger wavelength where the specific CW wavelength at 943 nm is marked by the cross symbol and specific view of CW triggers wavelengths from 937 nm to 945 nm (1 nm as interval) are shown in the inset.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z k2 i k+1 k! β k k A t k =iγ( 1+i τ shock t )( A( z,t ) + R( t ' ) | A(z,t t ' ) | 2 d t ' ),

Metrics