Abstract

Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in individual aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The SH-SPP generation is considered theoretically and investigated experimentally with angular-resolved leakage radiation spectroscopy for normal incidence of the excitation beam. Both measurements and simulations show asymmetric excitation of left- and right-propagating SH-SPPs, which is explained as an effect of fiber molecules being oriented at an angle relative to the silver film surface.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

Esben Skovsen, Thomas Søndergaard, Jacek Fiutowski, Paw Simesen, Andreas Osadnik, Arne Lützen, Horst-Günter Rubahn, Sergey I. Bozhevolnyi, and Kjeld Pedersen
Opt. Express 20(15) 16715-16725 (2012)

Surface plasmon polariton generation by light scattering off aligned organic nanofibers

Esben Skovsen, Thomas Søndergaard, Jacek Fiutowski, Horst-Günter Rubahn, and Kjeld Pedersen
J. Opt. Soc. Am. B 29(2) 249-256 (2012)

Organic nanofiber-loaded surface plasmon-polariton waveguides

Ilya P. Radko, Jacek Fiutowski, Luciana Tavares, Horst-Günter Rubahn, and Sergey I. Bozhevolnyi
Opt. Express 19(16) 15155-15161 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [Crossref]
  2. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
    [Crossref]
  3. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
    [Crossref] [PubMed]
  4. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
    [Crossref]
  5. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1986).
  6. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103(26), 266802 (2009).
    [Crossref] [PubMed]
  7. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
    [Crossref] [PubMed]
  8. E. Skovsen, T. Søndergaard, J. Fiutowski, P. Simesen, A. Osadnik, A. Lützen, H.-G. Rubahn, S. I. Bozhevolnyi, and K. Pedersen, “Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers,” Opt. Express 20(15), 16715–16725 (2012).
    [Crossref]
  9. E. Skovsen, T. Søndergaard, J. Fiutowski, H.-G. Rubahn, and K. Pedersen, “Surface plasmon polariton generation by light scattering off aligned organic nanofibers,” J. Opt. Soc. Am. B 29(2), 249–256 (2012).
    [Crossref]
  10. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  11. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  12. K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96(4), 821–826 (2009).
    [Crossref]
  13. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field Interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
    [Crossref] [PubMed]
  14. L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7(17), 2460–2463 (2011).
    [PubMed]
  15. C. Maibohm, J. R. Brewer, H. Sturm, F. Balzer, and H. G. Rubahn, “Bleaching and coating of organic nanofibers,” J. Appl. Phys. 100(5), 054304 (2006).
    [Crossref]
  16. J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun. 283(7), 1514–1518 (2010).
    [Crossref]
  17. J. Kjelstrup-Hansen, C. Simbrunner, and H.-G. Rubahn, “Organic surface-grown nanowires for functional devices,” Rep. Prog. Phys. 76(12), 126502 (2013).
    [Crossref] [PubMed]

2013 (2)

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field Interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

J. Kjelstrup-Hansen, C. Simbrunner, and H.-G. Rubahn, “Organic surface-grown nanowires for functional devices,” Rep. Prog. Phys. 76(12), 126502 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7(17), 2460–2463 (2011).
[PubMed]

2010 (1)

J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun. 283(7), 1514–1518 (2010).
[Crossref]

2009 (2)

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96(4), 821–826 (2009).
[Crossref]

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103(26), 266802 (2009).
[Crossref] [PubMed]

2008 (2)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[Crossref]

2007 (2)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

2006 (1)

C. Maibohm, J. R. Brewer, H. Sturm, F. Balzer, and H. G. Rubahn, “Bleaching and coating of organic nanofibers,” J. Appl. Phys. 100(5), 054304 (2006).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Balzer, F.

C. Maibohm, J. R. Brewer, H. Sturm, F. Balzer, and H. G. Rubahn, “Bleaching and coating of organic nanofibers,” J. Appl. Phys. 100(5), 054304 (2006).
[Crossref]

Bharadwaj, P.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

Boltasseva, A.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[Crossref]

Bouhelier, A.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

E. Skovsen, T. Søndergaard, J. Fiutowski, P. Simesen, A. Osadnik, A. Lützen, H.-G. Rubahn, S. I. Bozhevolnyi, and K. Pedersen, “Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers,” Opt. Express 20(15), 16715–16725 (2012).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[Crossref]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Brewer, J.

J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun. 283(7), 1514–1518 (2010).
[Crossref]

Brewer, J. R.

C. Maibohm, J. R. Brewer, H. Sturm, F. Balzer, and H. G. Rubahn, “Bleaching and coating of organic nanofibers,” J. Appl. Phys. 100(5), 054304 (2006).
[Crossref]

Brucoli, G.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Fiutowski, J.

García-Vidal, F. J.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Ginzburg, P.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field Interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kjelstrup-Hansen, J.

J. Kjelstrup-Hansen, C. Simbrunner, and H.-G. Rubahn, “Organic surface-grown nanowires for functional devices,” Rep. Prog. Phys. 76(12), 126502 (2013).
[Crossref] [PubMed]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7(17), 2460–2463 (2011).
[PubMed]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Lützen, A.

Maibohm, C.

C. Maibohm, J. R. Brewer, H. Sturm, F. Balzer, and H. G. Rubahn, “Bleaching and coating of organic nanofibers,” J. Appl. Phys. 100(5), 054304 (2006).
[Crossref]

Marino, G.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field Interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Martínez, A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field Interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Martín-Moreno, L.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Novotny, L.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103(26), 266802 (2009).
[Crossref] [PubMed]

O’Connor, D.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field Interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Osadnik, A.

Palomba, S.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103(26), 266802 (2009).
[Crossref] [PubMed]

Pedersen, K.

Quidant, R.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103(26), 266802 (2009).
[Crossref] [PubMed]

Radko, I. P.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Rafaelsen, J.

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96(4), 821–826 (2009).
[Crossref]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Renger, J.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103(26), 266802 (2009).
[Crossref] [PubMed]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Rodríguez-Fortuño, F. J.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field Interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Rubahn, H. G.

C. Maibohm, J. R. Brewer, H. Sturm, F. Balzer, and H. G. Rubahn, “Bleaching and coating of organic nanofibers,” J. Appl. Phys. 100(5), 054304 (2006).
[Crossref]

Rubahn, H.-G.

J. Kjelstrup-Hansen, C. Simbrunner, and H.-G. Rubahn, “Organic surface-grown nanowires for functional devices,” Rep. Prog. Phys. 76(12), 126502 (2013).
[Crossref] [PubMed]

E. Skovsen, T. Søndergaard, J. Fiutowski, H.-G. Rubahn, and K. Pedersen, “Surface plasmon polariton generation by light scattering off aligned organic nanofibers,” J. Opt. Soc. Am. B 29(2), 249–256 (2012).
[Crossref]

E. Skovsen, T. Søndergaard, J. Fiutowski, P. Simesen, A. Osadnik, A. Lützen, H.-G. Rubahn, S. I. Bozhevolnyi, and K. Pedersen, “Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers,” Opt. Express 20(15), 16715–16725 (2012).
[Crossref]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7(17), 2460–2463 (2011).
[PubMed]

J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun. 283(7), 1514–1518 (2010).
[Crossref]

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96(4), 821–826 (2009).
[Crossref]

Schiek, M.

J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun. 283(7), 1514–1518 (2010).
[Crossref]

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96(4), 821–826 (2009).
[Crossref]

Simbrunner, C.

J. Kjelstrup-Hansen, C. Simbrunner, and H.-G. Rubahn, “Organic surface-grown nanowires for functional devices,” Rep. Prog. Phys. 76(12), 126502 (2013).
[Crossref] [PubMed]

Simesen, P.

Skovsen, E.

Søndergaard, T.

Sturm, H.

C. Maibohm, J. R. Brewer, H. Sturm, F. Balzer, and H. G. Rubahn, “Bleaching and coating of organic nanofibers,” J. Appl. Phys. 100(5), 054304 (2006).
[Crossref]

Tavares, L.

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7(17), 2460–2463 (2011).
[PubMed]

van Hulst, N.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103(26), 266802 (2009).
[Crossref] [PubMed]

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Wurtz, G. A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field Interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Zayats, A. V.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field Interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Appl. Phys. B (1)

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96(4), 821–826 (2009).
[Crossref]

J. Appl. Phys. (1)

C. Maibohm, J. R. Brewer, H. Sturm, F. Balzer, and H. G. Rubahn, “Bleaching and coating of organic nanofibers,” J. Appl. Phys. 100(5), 054304 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Nat. Phys. (1)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Opt. Commun. (1)

J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun. 283(7), 1514–1518 (2010).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[Crossref]

Phys. Rev. Lett. (2)

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103(26), 266802 (2009).
[Crossref] [PubMed]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Rep. Prog. Phys. (1)

J. Kjelstrup-Hansen, C. Simbrunner, and H.-G. Rubahn, “Organic surface-grown nanowires for functional devices,” Rep. Prog. Phys. 76(12), 126502 (2013).
[Crossref] [PubMed]

Science (1)

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field Interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Small (1)

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7(17), 2460–2463 (2011).
[PubMed]

Other (2)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1986).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Calculated angular leakage radiation spectra for a CNHP4 fiber of width W and height 100 nm placed on a 40-nm-silver-film-on-quartz geometry, and being illuminated with normally incident light from the air side with electric field polarized along the x axis. (a) Linear scattering, and (b) Second Harmonic generated power, per unit angle versus angle in the quartz substrate. For linear scattering the pump wavelength is 390 nm, and for SHG it is 780 nm but the detected SHG power is at the wavelength 390 nm. The molecules of CNHP4 fibers are oriented at an angle of 25 deg. relative to the silver surface. Red curves are shifted by 0.3 on the second axis for clarity.
Fig. 2
Fig. 2 a) Schematic of the experimental setup used: BS: Beam splitter, MO: Microscope objective, CP: Cylindrical prism, CG: Colored glass filter, SiOx: 50 nm SiOx layer, Ag-film: 40 nm silver layer, PMT: Photo Multiplier Tube, CCD: Charge Coupled Device camera, BBO: Beta Barium Borate crystal used in the linear scattering experiments. The insert shows: A schematic of the sample mounted on the flat surface side of the cylindrical prism (up-side down). b) Microscope image of the investigated fibers. The red box illustrates the area rasterscanned. c) SH image of the rasterscanned area. One should note the defect in the fiber between A and B. d) Three different angle resolved leakage radiation spectra. Linear scattering with an excitation source of 392.5 nm (785nm frequency doubled in a BBO) on a single fiber (red curve), SH light generated for the same single fiber (blue curve), and the linear scattering on an ensemble of fibers (black curve). All curves are normalized separately.
Fig. 3
Fig. 3 a) Angle resolved leakage radiation spectra with the excitation source of 785 nm, where curves A and B represent the SPP excitation by SH light generated in two different fibers in Fig. 2(b). The blue curve: Linear scattering with an excitation source of 392.5 nm (785 nm frequency doubled in a BBO crystal) on an ensemble of fibers. All curves are normalized separately. b) Focus scan of a SHG signal normalized after the SPP peak, the red curve was measured when the laser focus was centered on a single fiber in the direction perpendicular to the fiber, whereas the blue and black were measured for respectively + 0.2µm and −0.2µm displacement. Note that the signal to noise ratio decrease in the two non-centered measurements is due to the reduced overlap between the laser beam and the fiber.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k 0 n quartz sinθRe( k 0 ε Ag 1+ ε Ag ).
P(r, ω SH )= χ (2) ( x ^ cosα+ y ^ sinα )P(r),P(r)= [ ( x ^ cosα+ y ^ sinα )E(r, ω FH ) ] 2 ,
E(r; ω SH )= G(r,r'; ω SH ) ω SH 2 c 2 [ P(r'; ω SH ) ε 0 +( ε(r'; ω SH ) ε ref (r'; ω SH ) )E(r'; ω SH ) ]dx'dy',

Metrics