Abstract

This paper reports the first derived thermo-optical properties for vacuum deposited infrared thin films embedded in multilayers. These properties were extracted from the temperature-dependence of manufactured narrow bandpass filters across the 4-17 µm mid-infrared wavelength region. Using a repository of spaceflight multi-cavity bandpass filters, the thermo-optical expansion coefficients of PbTe and ZnSe were determined across an elevated temperature range 20-160 °C. Embedded ZnSe films showed thermo-optical properties similar to reported bulk values, whilst the embedded PbTe films of lower optical density, deviate from reference literature sources. Detailed knowledge of derived coefficients is essential to the multilayer design of temperature-invariant narrow bandpass filters for use in non-cooled infrared detection systems. We further present manufacture of the first reported temperature-invariant multi-cavity narrow bandpass filter utilizing PbS chalcogenide layer material.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared

Thomine Stolberg-Rohr and Gary J. Hawkins
Opt. Express 23(1) 580-596 (2015)

Recent progress in improving low-temperature stability of infrared thin-film interference filters

B. Li, S. Y. Zhang, J. C. Jiang, D. Q. Liu, and F. S. Zhang
Opt. Express 13(17) 6376-6380 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Seeley, R. Hunneman, and A. Whatley, “Far infrared filters for the Galileo-Jupiter and other missions,” Appl. Opt. 20(1), 31–39 (1981).
    [Crossref] [PubMed]
  2. J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–94 (1980).
  3. G. J. Hawkins, J. S. Seeley, and R. Hunneman, “Spectral characterization of cooled filters for remote sensing,” Proc. SPIE 915, 71–78 (1988).
  4. B. Li, S. Zhang, J. Jiang, D. Q. Liu, and F. Zhang, “Recent progress in improving low-temperature stability of infrared thin-film interference filters,” Opt. Express 13(17), 6376–6380 (2005).
    [Crossref] [PubMed]
  5. T. Stolberg-Rohr and G. J. Hawkins, “Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared,” Opt. Express 23(1), 580–596 (2015).
    [PubMed]
  6. T. Stolberg-Rohr, R. Buchner, S. Clausen, J. M. Jensen, A. Skouboe, G. Hawkins, and R. S. Hansen, “In optics humidity compensation in NDIR exhaust gas measurements of NO2,” in Advanced Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper SeTh1C.3.
    [Crossref]
  7. M. N. Polyanskiy, “Refractive index database,” http://refractiveindex.info (accessed Feb. 29 2015)
  8. E. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc. 1985).
  9. K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).
  10. J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
    [Crossref]
  11. Yu. I. Ravich, B. A. Efimova, and I. A. Smirnov, Semiconducting Lead Chalcogenides (Plenum Press, 1970).
  12. R. A. Feldman, D. Horowitz, and R. M. Waxler, “Refractive properties of infrared window materials” in Proceedings of Laser induced damage in optical materials, (SPIE, 1977).
  13. C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansioncoefficient of ZnSe crystal between 17 and 1080 °C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
    [Crossref]
  14. G. J. Hawkins, R. Hunneman, R. Sherwood, and B. M. Barrett, “Infrared filters and coatings for the High Resolution Dynamics Limb Sounder (6-18 µm),” Appl. Opt. 39(28), 5221–5230 (2000).
    [Crossref] [PubMed]
  15. G. J. Hawkins, R. E. Sherwood, B. M. Barrett, M. Wallace, H. J. B. Orr, K. Matthews, and S. Bisht, “High-performance infrared narrow-bandpass filters for the Indian National Satellite System meteorological instrument (INSAT-3D),” Appl. Opt. 47(13), 2346–2356 (2008).
    [Crossref] [PubMed]
  16. G. Hawkins, R. Sherwood, K. Djotni, P. Coppo, H. Höhnemann, and F. Belli, “Cooled infrared filters and dichroics for the Sea and Land Surface Temperature Radiometer,” Appl. Opt. 52(10), 2125–2135 (2013).
    [Crossref] [PubMed]
  17. C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D Appl. Phys. 9(2), 321–328 (1976).
    [Crossref]
  18. P. Klocek, Handbook of Infrared Materials (Marcel Dekker, inc., 1991).
  19. J. G. N. Braithwaite, “Infra-red filters using evaporated layers of lead sulphide, lead selenide and lead telluride,” J. Sci. Instrum. 32(1), 10–11 (1955).
    [Crossref]
  20. R. Dalvern, “A review of the semiconductor properties of PbTe, PbSe, PbS and PbO,” Infrared Phys. 9, 1740–1744 (1996).
  21. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34(4), 667–675 (1995).
    [Crossref] [PubMed]

2015 (1)

2013 (1)

2009 (1)

C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansioncoefficient of ZnSe crystal between 17 and 1080 °C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

2008 (1)

2005 (1)

2000 (1)

1996 (1)

R. Dalvern, “A review of the semiconductor properties of PbTe, PbSe, PbS and PbO,” Infrared Phys. 9, 1740–1744 (1996).

1995 (1)

1989 (1)

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

1988 (1)

G. J. Hawkins, J. S. Seeley, and R. Hunneman, “Spectral characterization of cooled filters for remote sensing,” Proc. SPIE 915, 71–78 (1988).

1981 (1)

1980 (1)

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–94 (1980).

1976 (1)

C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D Appl. Phys. 9(2), 321–328 (1976).
[Crossref]

1965 (1)

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
[Crossref]

1955 (1)

J. G. N. Braithwaite, “Infra-red filters using evaporated layers of lead sulphide, lead selenide and lead telluride,” J. Sci. Instrum. 32(1), 10–11 (1955).
[Crossref]

Barrett, B. M.

Belli, F.

Bisht, S.

Braithwaite, J. G. N.

J. G. N. Braithwaite, “Infra-red filters using evaporated layers of lead sulphide, lead selenide and lead telluride,” J. Sci. Instrum. 32(1), 10–11 (1955).
[Crossref]

Coppo, P.

Dalvern, R.

R. Dalvern, “A review of the semiconductor properties of PbTe, PbSe, PbS and PbO,” Infrared Phys. 9, 1740–1744 (1996).

Djotni, K.

Evans, C. S.

C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D Appl. Phys. 9(2), 321–328 (1976).
[Crossref]

Feth, S.

C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansioncoefficient of ZnSe crystal between 17 and 1080 °C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Hawkins, G.

G. Hawkins, R. Sherwood, K. Djotni, P. Coppo, H. Höhnemann, and F. Belli, “Cooled infrared filters and dichroics for the Sea and Land Surface Temperature Radiometer,” Appl. Opt. 52(10), 2125–2135 (2013).
[Crossref] [PubMed]

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

Hawkins, G. J.

Höhnemann, H.

Hunneman, R.

G. J. Hawkins, R. Hunneman, R. Sherwood, and B. M. Barrett, “Infrared filters and coatings for the High Resolution Dynamics Limb Sounder (6-18 µm),” Appl. Opt. 39(28), 5221–5230 (2000).
[Crossref] [PubMed]

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

G. J. Hawkins, J. S. Seeley, and R. Hunneman, “Spectral characterization of cooled filters for remote sensing,” Proc. SPIE 915, 71–78 (1988).

J. S. Seeley, R. Hunneman, and A. Whatley, “Far infrared filters for the Galileo-Jupiter and other missions,” Appl. Opt. 20(1), 31–39 (1981).
[Crossref] [PubMed]

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–94 (1980).

C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D Appl. Phys. 9(2), 321–328 (1976).
[Crossref]

Jensen, J. D.

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
[Crossref]

Jiang, J.

Lehoczky, S. L.

C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansioncoefficient of ZnSe crystal between 17 and 1080 °C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Li, B.

Liu, D. Q.

Matthews, K.

Orr, H. J. B.

Schoolar, R. B.

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
[Crossref]

Seeley, J.

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

Seeley, J. S.

G. J. Hawkins, J. S. Seeley, and R. Hunneman, “Spectral characterization of cooled filters for remote sensing,” Proc. SPIE 915, 71–78 (1988).

J. S. Seeley, R. Hunneman, and A. Whatley, “Far infrared filters for the Galileo-Jupiter and other missions,” Appl. Opt. 20(1), 31–39 (1981).
[Crossref] [PubMed]

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–94 (1980).

C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D Appl. Phys. 9(2), 321–328 (1976).
[Crossref]

Sherwood, R.

Sherwood, R. E.

Stolberg-Rohr, T.

Su, C.-H.

C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansioncoefficient of ZnSe crystal between 17 and 1080 °C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Takashashi, H.

Wallace, M.

Whatley, A.

J. S. Seeley, R. Hunneman, and A. Whatley, “Far infrared filters for the Galileo-Jupiter and other missions,” Appl. Opt. 20(1), 31–39 (1981).
[Crossref] [PubMed]

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–94 (1980).

Zemel, J. N.

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
[Crossref]

Zhang, F.

Zhang, K.

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

Zhang, S.

Appl. Opt. (5)

Infrared Phys. (1)

R. Dalvern, “A review of the semiconductor properties of PbTe, PbSe, PbS and PbO,” Infrared Phys. 9, 1740–1744 (1996).

J. Phys. D Appl. Phys. (1)

C. S. Evans, R. Hunneman, and J. S. Seeley, “Optical thickness changes in freshly deposited layers of lead telluride,” J. Phys. D Appl. Phys. 9(2), 321–328 (1976).
[Crossref]

J. Sci. Instrum. (1)

J. G. N. Braithwaite, “Infra-red filters using evaporated layers of lead sulphide, lead selenide and lead telluride,” J. Sci. Instrum. 32(1), 10–11 (1955).
[Crossref]

Mater. Lett. (1)

C.-H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansioncoefficient of ZnSe crystal between 17 and 1080 °C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
[Crossref]

Proc. SPIE (3)

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow band IR filters containing PbTe, 4-20 um,” Proc. SPIE 246, 83–94 (1980).

G. J. Hawkins, J. S. Seeley, and R. Hunneman, “Spectral characterization of cooled filters for remote sensing,” Proc. SPIE 915, 71–78 (1988).

K. Zhang, J. Seeley, R. Hunneman, and G. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).

Other (6)

P. Klocek, Handbook of Infrared Materials (Marcel Dekker, inc., 1991).

Yu. I. Ravich, B. A. Efimova, and I. A. Smirnov, Semiconducting Lead Chalcogenides (Plenum Press, 1970).

R. A. Feldman, D. Horowitz, and R. M. Waxler, “Refractive properties of infrared window materials” in Proceedings of Laser induced damage in optical materials, (SPIE, 1977).

T. Stolberg-Rohr, R. Buchner, S. Clausen, J. M. Jensen, A. Skouboe, G. Hawkins, and R. S. Hansen, “In optics humidity compensation in NDIR exhaust gas measurements of NO2,” in Advanced Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper SeTh1C.3.
[Crossref]

M. N. Polyanskiy, “Refractive index database,” http://refractiveindex.info (accessed Feb. 29 2015)

E. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc. 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Measured center wavelength shift with temperature as a function of multilayer design specified by the low index sensitivity factor (dots) shown together with the results of multivariate least square fits (lines).
Fig. 2
Fig. 2 Thermo-optical expansion coefficients of embedded PbTe and ZnSe determined by multivariate least square fit to Eq. (1) shown together with literature data, the origin of which are listed in Table 2. Additionally, a value for γ PbTe was extracted from each bandpass filters based on a fixed γ ZnSe value.
Fig. 3
Fig. 3 Temperature-invariant PbS/ZnSe 8% FWHM narrow bandpass filter at 3.0 µm on Sapphire (Single-side coating inclusive of rear surface reflection losses)

Tables (2)

Tables Icon

Table 1 Thermo-optical expansion coefficients derived for embedded PbTe and ZnSe films.

Tables Icon

Table 2 Origin of reference α and β literature data

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ= 1 δ dδ dT = 1 l dl dT + 1 δ dn dT
1 λ C d λ C dT = s L   γ L + s H   γ H
γ H = ( 1 λ c d λ c dT s L   γ L ) / s H

Metrics