Abstract

We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (< 50 kHz) 1064 nm continuous-wave (CW) fiber laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ∼ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10−4 cm−1. The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards label-free distributed fiber hydrogen sensor with stimulated Raman spectroscopy

F. Yang, Y. Zhao, Y. Qi, Y. Z. Tan, H. L. Ho, and W. Jin
Opt. Express 27(9) 12869-12882 (2019)

High-resolution cw stimulated Raman spectroscopy in molecular hydrogen

Adelbert Owyoung
Opt. Lett. 2(4) 91-93 (1978)

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, 1996).
  2. M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
    [Crossref]
  3. S. Hanf, T. Bögözi, R. Keiner, Torsten Frosch, and Jürgen Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2015).
    [Crossref]
  4. N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, 1975).
  5. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [Crossref] [PubMed]
  6. R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57, 163–176 (2011).
    [Crossref]
  7. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled follow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref] [PubMed]
  8. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
    [Crossref]
  9. F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26, 1209–1215 (2009).
    [Crossref]
  10. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
    [Crossref] [PubMed]
  11. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
    [Crossref]
  12. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref] [PubMed]
  13. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Optics 47, 4255–4261 (2008).
    [Crossref]
  14. J. L. Doménech and M. Cueto, “Sensitivity enhancement in high resolution stimulated Raman spectroscopy of gases with hollow-core photonic crystal fibers,” Opt. Lett. 38, 4074–4077 (2013).
    [Crossref] [PubMed]
  15. P. Esherick and A. Owyoung, in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Heyden, 1982) pp. 130–187.
  16. Q. Wang, J. Chang, C. Zhu, Y. Liu, G. Lv, F. Wang, X. Liu, and Z. Wang, “High-sensitive measurement of water vapor: shot-noise level performance via a noise canceller,” Appl. Opt. 52, 1094–1099 (2013).
    [Crossref] [PubMed]
  17. D. R. Wiese, U. Stroessner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Comm. 184, 329–333 (2000).
    [Crossref]
  18. D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24, 1499–1501 (1999).
    [Crossref]
  19. NKT Photonics A/S, “HC-1060-02,” www.nktphotonics.com/files/files/HC-1060.pdf
  20. J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790–2797 (2008).
    [Crossref] [PubMed]
  21. J. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
    [Crossref]
  22. A. Owyoung, “High-resolution cw stimulated Raman spectroscopy in molecular hydrogen,” Opt. Lett. 2, 91–93 (1978).
    [Crossref] [PubMed]
  23. M. P. Le Flohic, P. Duggan, P. M. Sinclair, J. R. Drummond, and A. D. May, “Collisional broadening and shifting of the pure rotational Raman lines S0(J=04) of H2 at room temperature,” Can. J. Phys. 72, 186–192 (1994).
    [Crossref]

2015 (1)

S. Hanf, T. Bögözi, R. Keiner, Torsten Frosch, and Jürgen Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2015).
[Crossref]

2014 (1)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

2013 (2)

2011 (1)

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57, 163–176 (2011).
[Crossref]

2009 (1)

2008 (4)

J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790–2797 (2008).
[Crossref] [PubMed]

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Optics 47, 4255–4261 (2008).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

2007 (1)

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
[Crossref]

2005 (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

2003 (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled follow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

2000 (1)

D. R. Wiese, U. Stroessner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Comm. 184, 329–333 (2000).
[Crossref]

1999 (1)

1994 (1)

M. P. Le Flohic, P. Duggan, P. M. Sinclair, J. R. Drummond, and A. D. May, “Collisional broadening and shifting of the pure rotational Raman lines S0(J=04) of H2 at room temperature,” Can. J. Phys. 72, 186–192 (1994).
[Crossref]

1978 (1)

1972 (1)

J. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

Abdolvand, A.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Agrawal, Y. K.

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57, 163–176 (2011).
[Crossref]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled follow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Arie, A.

D. R. Wiese, U. Stroessner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Comm. 184, 329–333 (2000).
[Crossref]

Bartlome, R.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

Benabid, F.

F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26, 1209–1215 (2009).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled follow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Bögözi, T.

S. Hanf, T. Bögözi, R. Keiner, Torsten Frosch, and Jürgen Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2015).
[Crossref]

Buric, M. P.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Optics 47, 4255–4261 (2008).
[Crossref]

Carraz, O.

Chang, J.

Chang, W.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Chen, K. P.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Optics 47, 4255–4261 (2008).
[Crossref]

Colthup, N. B.

N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, 1975).

Couny, F.

F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26, 1209–1215 (2009).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Cueto, M.

Daly, L. H.

N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, 1975).

Das, R. S.

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57, 163–176 (2011).
[Crossref]

Doménech, J. L.

Drummond, J. R.

M. P. Le Flohic, P. Duggan, P. M. Sinclair, J. R. Drummond, and A. D. May, “Collisional broadening and shifting of the pure rotational Raman lines S0(J=04) of H2 at room temperature,” Can. J. Phys. 72, 186–192 (1994).
[Crossref]

Duggan, P.

M. P. Le Flohic, P. Duggan, P. M. Sinclair, J. R. Drummond, and A. D. May, “Collisional broadening and shifting of the pure rotational Raman lines S0(J=04) of H2 at room temperature,” Can. J. Phys. 72, 186–192 (1994).
[Crossref]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, 1996).

Esherick, P.

P. Esherick and A. Owyoung, in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Heyden, 1982) pp. 130–187.

Falk, J.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Optics 47, 4255–4261 (2008).
[Crossref]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Frosch, Torsten

S. Hanf, T. Bögözi, R. Keiner, Torsten Frosch, and Jürgen Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2015).
[Crossref]

Gray, M. B.

Hald, J.

Hanf, S.

S. Hanf, T. Bögözi, R. Keiner, Torsten Frosch, and Jürgen Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2015).
[Crossref]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Henningsen, J.

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Javan, A.

J. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Keiner, R.

S. Hanf, T. Bögözi, R. Keiner, Torsten Frosch, and Jürgen Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2015).
[Crossref]

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled follow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Le Flohic, M. P.

M. P. Le Flohic, P. Duggan, P. M. Sinclair, J. R. Drummond, and A. D. May, “Collisional broadening and shifting of the pure rotational Raman lines S0(J=04) of H2 at room temperature,” Can. J. Phys. 72, 186–192 (1994).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
[Crossref]

Liu, X.

Liu, Y.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Lv, G.

Marinov, D.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

May, A. D.

M. P. Le Flohic, P. Duggan, P. M. Sinclair, J. R. Drummond, and A. D. May, “Collisional broadening and shifting of the pure rotational Raman lines S0(J=04) of H2 at room temperature,” Can. J. Phys. 72, 186–192 (1994).
[Crossref]

McClelland, D. E.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Mlynek, J.

D. R. Wiese, U. Stroessner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Comm. 184, 329–333 (2000).
[Crossref]

Murray, J.

J. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

Owyoung, A.

A. Owyoung, “High-resolution cw stimulated Raman spectroscopy in molecular hydrogen,” Opt. Lett. 2, 91–93 (1978).
[Crossref] [PubMed]

P. Esherick and A. Owyoung, in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Heyden, 1982) pp. 130–187.

Peters, A.

D. R. Wiese, U. Stroessner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Comm. 184, 329–333 (2000).
[Crossref]

Popp, Jürgen

S. Hanf, T. Bögözi, R. Keiner, Torsten Frosch, and Jürgen Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2015).
[Crossref]

Rey, J. M.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

Rosenman, G.

D. R. Wiese, U. Stroessner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Comm. 184, 329–333 (2000).
[Crossref]

Russell, P. St J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Russell, P. St. J.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled follow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Schiller, S.

D. R. Wiese, U. Stroessner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Comm. 184, 329–333 (2000).
[Crossref]

Shaddock, D. A.

Sigrist, M. W.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

Sinclair, P. M.

M. P. Le Flohic, P. Duggan, P. M. Sinclair, J. R. Drummond, and A. D. May, “Collisional broadening and shifting of the pure rotational Raman lines S0(J=04) of H2 at room temperature,” Can. J. Phys. 72, 186–192 (1994).
[Crossref]

Skliar, A.

D. R. Wiese, U. Stroessner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Comm. 184, 329–333 (2000).
[Crossref]

Stroessner, U.

D. R. Wiese, U. Stroessner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Comm. 184, 329–333 (2000).
[Crossref]

Travers, J. C.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Vogler, D. E.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

Wächter, H.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

Wang, F.

Wang, Q.

Wang, Z.

Wiberley, S. E.

N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, 1975).

Wiese, D. R.

D. R. Wiese, U. Stroessner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Comm. 184, 329–333 (2000).
[Crossref]

Woodruff, S. D.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Optics 47, 4255–4261 (2008).
[Crossref]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Zhu, C.

Anal. Chem. (1)

S. Hanf, T. Bögözi, R. Keiner, Torsten Frosch, and Jürgen Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87, 982–988 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Optics (1)

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Optics 47, 4255–4261 (2008).
[Crossref]

Appl. Phys. B (1)

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

Can. J. Phys. (1)

M. P. Le Flohic, P. Duggan, P. M. Sinclair, J. R. Drummond, and A. D. May, “Collisional broadening and shifting of the pure rotational Raman lines S0(J=04) of H2 at room temperature,” Can. J. Phys. 72, 186–192 (1994).
[Crossref]

J. Mol. Spectrosc. (1)

J. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Opt. Comm. (1)

D. R. Wiese, U. Stroessner, A. Peters, J. Mlynek, S. Schiller, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Comm. 184, 329–333 (2000).
[Crossref]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
[Crossref]

Science (3)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled follow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57, 163–176 (2011).
[Crossref]

Other (4)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, 1996).

N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, 1975).

NKT Photonics A/S, “HC-1060-02,” www.nktphotonics.com/files/files/HC-1060.pdf

P. Esherick and A. Owyoung, in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Heyden, 1982) pp. 130–187.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 An overview of the experimental setup. DM: Dichroic Mirror, BS: Beam Splitter, PD: Photo Diode. M1,2: OPO mirrors. The inset shows a schematic of the Raman transition studied here.
Fig. 2
Fig. 2 Effect of the differential detection scheme. The blue curve shows the OPO output power measured with a DC photo detector. The red curve shows the difference signal and the black curve is the lock-in signal. The reference arm is blocked during a scan resulting in increased noise in both the detector and lock-in signals. All measurements are made with an integration time of 30 ms for the lock-in amplifier. Each trace contains 100000 data points.
Fig. 3
Fig. 3 Stimulated Raman signal from H2 as a function of the pump laser frequency relative to the Raman transition displaying the signals involved and the noise reduction from both the electronic subtraction and lock-in detection. The blue curve shows the OPO output power, the red curve shows the difference signal, and the black curve is the lock-in signal. The H2 pressure in the fiber was 867 hPa, the transmitted power of the probe (OPO) light was 1.85 mW and the transmitted power of the pump light was 230 mW. The SNR is approximately 1600. The inset shows a blow-up of the vertical scale for the lock-in signal with the same units on both axes. The noise suppression from the differential detection remains around 20 dB here. The frequency axis was calibrated with a Fabry-Pérot cavity to an accuracy of 1 MHz.
Fig. 4
Fig. 4 A scan over the Raman transition for different pump powers with the probe power roughly constant (at the level 1.5–1.8 mW). The signal amplitude scales linearly with pump power. The H2 pressure in the fiber was 867 hPa. Numbers in parenthesis denote uncertainty of the final digit corresponding to one standard deviation.
Fig. 5
Fig. 5 The obtainable signal-to-noise ratio as a function of H2 pressure inside the HC-PCF with typical parameters for the pump power (P1064 = 300 mW) and the probe power (P1135 = 1 mW). The red line is a linear fit to data with the intercept set to zero.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ P ( ν probe ) = N π h c 2 ν probe 2 ( d 2 σ d Ω d ν probe ) P ( ν pump ) P ( ν probe ) ,

Metrics