Abstract

We present a theoretical optimisation of 1D apodized grating couplers in a “pure” Silicon-On-Insulator (SOI) architecture, i.e. without any bottom reflector element, by means of a general mutative method. We perform a comprehensive 2D Finite Difference Time Domain study of chirped and apodized grating couplers in 220 nm SOI, and demonstrate that the global maximum coupling efficiency in that platform is capped to 65% (−1.9 dB). Moving to designs with thicker Si-layers, we identify a new record design in 340 nm SOI, with a simulated coupling efficiency of 89% (−0.5 dB). Going to thicker Si layers does not further improve the efficiency, implying that −0.5 dB may be a global maximum for a grating coupler in SOI without a bottom-reflector. Even after allowing for 193 nm UV-lithographic fabrication constraints, the 340 nm design still offers −0.7 dB efficiency. These new apodized designs are the first pure SOI couplers compatible with deep-UV lithography to offer better than −1 dB insertion losses. With only very minor changes to existing deposition and lithography recipes, they are compatible with the multi-project wafer runs already offered by Si-Photonics foundries.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimizing polarization-diversity couplers for Si-photonics: reaching the −1dB coupling efficiency threshold

Lee Carroll, Dario Gerace, Ilaria Cristiani, and Lucio C. Andreani
Opt. Express 22(12) 14769-14781 (2014)

Ultra efficient silicon nitride grating coupler with bottom grating reflector

Jinghui Zou, Yu Yu, Mengyuan Ye, Lei Liu, Shupeng Deng, and Xinliang Zhang
Opt. Express 23(20) 26305-26312 (2015)

An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics

Mikael Antelius, Kristinn B. Gylfason, and Hans Sohlström
Opt. Express 19(4) 3592-3598 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightw. Technol. 25(1), 151–156 (2007).
    [Crossref]
  2. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [Crossref]
  3. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
    [Crossref] [PubMed]
  4. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
    [Crossref] [PubMed]
  5. X. Chen, C. Li, C.K.Y. Fung, S.M.G. Lo, and H.K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
    [Crossref]
  6. Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, “Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,” Opt. Lett. 35(8), 1290–1292 (2010).
    [Crossref] [PubMed]
  7. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [Crossref] [PubMed]
  8. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [Crossref] [PubMed]
  9. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
    [Crossref] [PubMed]
  10. S. Yang, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “High efficiency germanium-assisted grating coupler,” Opt. Express 22(25), 30607–30612 (2014).
    [Crossref]
  11. Y. Ding, H. Ou, C. Peucheret, and K. Yvind, “Fully-etched apodized fiber-to-chip grating coupler on the SOI platform with −0.78 dB coupling efficiency using photonic crystals and bonded Al mirror,” European Conference on Optical Communications (ECOC), September 2014, Cannes, France. Paper P.2.4. <hal-01069366>
  12. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5550 (2014).
    [Crossref]
  13. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
    [Crossref] [PubMed]
  14. W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
    [Crossref]
  15. D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
    [Crossref]
  16. D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
    [Crossref]
  17. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
    [Crossref] [PubMed]
  18. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightw. Technol. 27(5), 612–618 (2009).
    [Crossref]
  19. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
    [Crossref] [PubMed]
  20. L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21(15), 21556–21568 (2013).
    [Crossref] [PubMed]
  21. L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for Siphotonics: Reaching the −1dB coupling efficiency threshold,” Opt. Express 22(12), 14769–14781 (2014).
    [Crossref] [PubMed]
  22. CEA-Leti Passive devices library: http://www-leti.cea.fr/fr/content/download/2397/29215/file/Plaquette_Photonique_num.pdf - Accessed: May 2015.
  23. IMEC-ePIXfab Si-Photonics webpage: http://www.europractice-ic.com/SiPhotonics_technology_imec_passives.php Accessed: May 2015.
  24. IHP Standard Passives webpage: http://www.epixfab.eu/technologies/ihp-standard-passives - Accessed: May 2015.
  25. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [Crossref]
  26. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965).
    [Crossref]
  27. L. Lever, Z. Ikoni, and R. W. Kelsall, “Adiabatic mode coupling between SiGe photonic devices and SOI waveguides,” Opt. Express 20(28), 29500–29506 (2008).
    [Crossref]

2014 (5)

2013 (3)

2012 (1)

2010 (3)

2009 (1)

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightw. Technol. 27(5), 612–618 (2009).
[Crossref]

2008 (1)

2007 (2)

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightw. Technol. 25(1), 151–156 (2007).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

2006 (1)

2004 (2)

2003 (1)

D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

2002 (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

1965 (1)

Absil, P.

Andreani, L. C.

Ayre, M.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightw. Technol. 25(1), 151–156 (2007).
[Crossref]

Baehr-Jones, T.

Baets, R.

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightw. Technol. 27(5), 612–618 (2009).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightw. Technol. 25(1), 151–156 (2007).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[Crossref] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[Crossref] [PubMed]

D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Beckx, S.

Benedikovic, D.

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Berroth, M.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
[Crossref]

Bienstman, P.

Bogaerts, W.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightw. Technol. 27(5), 612–618 (2009).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[Crossref] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Borel, P.I.

D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Burghartz, J.

Butschke, J.

Carroll, L.

Cheben, P.

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Chen, X.

X. Chen, C. Li, C.K.Y. Fung, S.M.G. Lo, and H.K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Chong, H.

D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Cristiani, I.

Dado, M

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

De La Rue, R.M.

D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Ding, Y.

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5550 (2014).
[Crossref]

Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
[Crossref] [PubMed]

Y. Ding, H. Ou, C. Peucheret, and K. Yvind, “Fully-etched apodized fiber-to-chip grating coupler on the SOI platform with −0.78 dB coupling efficiency using photonic crystals and bonded Al mirror,” European Conference on Optical Communications (ECOC), September 2014, Cannes, France. Paper P.2.4. <hal-01069366>

Dumon, P.

Frandsen, L.H.

D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Fung, C.K.Y.

X. Chen, C. Li, C.K.Y. Fung, S.M.G. Lo, and H.K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Gerace, D.

Halir, R.

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

He, S.

Hochberg, M.

Ikoni, Z.

Janz, S.

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Kelsall, R. W.

Krauss, T. F.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightw. Technol. 25(1), 151–156 (2007).
[Crossref]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Kunze, A.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
[Crossref]

Lapointe, J.

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Lepage, G.

Letzkus, F.

Lever, L.

Li, C.

X. Chen, C. Li, C.K.Y. Fung, S.M.G. Lo, and H.K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Lo, S.M.G.

X. Chen, C. Li, C.K.Y. Fung, S.M.G. Lo, and H.K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Luyssaert, B.

Malitson, I. H.

Menezo, S.

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Ortega-Moñux, A.

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Ou, H.

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5550 (2014).
[Crossref]

Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
[Crossref] [PubMed]

Y. Ding, H. Ou, C. Peucheret, and K. Yvind, “Fully-etched apodized fiber-to-chip grating coupler on the SOI platform with −0.78 dB coupling efficiency using photonic crystals and bonded Al mirror,” European Conference on Optical Communications (ECOC), September 2014, Cannes, France. Paper P.2.4. <hal-01069366>

Pathak, S.

Peucheret, C.

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5550 (2014).
[Crossref]

Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
[Crossref] [PubMed]

Y. Ding, H. Ou, C. Peucheret, and K. Yvind, “Fully-etched apodized fiber-to-chip grating coupler on the SOI platform with −0.78 dB coupling efficiency using photonic crystals and bonded Al mirror,” European Conference on Optical Communications (ECOC), September 2014, Cannes, France. Paper P.2.4. <hal-01069366>

Pluk, E.

Roelkens, G.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightw. Technol. 27(5), 612–618 (2009).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightw. Technol. 25(1), 151–156 (2007).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[Crossref] [PubMed]

Schmid, J. H.

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Schrauwen, J.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightw. Technol. 25(1), 151–156 (2007).
[Crossref]

Selvaraja, S.

Taillaert, D.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightw. Technol. 25(1), 151–156 (2007).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[Crossref] [PubMed]

D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Tang, Y.

Tsang, H.K.

X. Chen, C. Li, C.K.Y. Fung, S.M.G. Lo, and H.K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Van Campenhout, J.

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Van Laere, F.

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightw. Technol. 27(5), 612–618 (2009).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightw. Technol. 25(1), 151–156 (2007).
[Crossref]

Van Thourhout, D.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightw. Technol. 27(5), 612–618 (2009).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightw. Technol. 25(1), 151–156 (2007).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[Crossref] [PubMed]

Vanslembrouck, M.

Verheyen, P.

Vermeulen, D.

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Vogel, W.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
[Crossref]

Wang, S.

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Wang, Z.

Westergren, U.

Wiaux, V.

Wosinski, L.

Xu, D. X.

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Yang, S.

Yvind, K.

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5550 (2014).
[Crossref]

Y. Ding, H. Ou, C. Peucheret, and K. Yvind, “Fully-etched apodized fiber-to-chip grating coupler on the SOI platform with −0.78 dB coupling efficiency using photonic crystals and bonded Al mirror,” European Conference on Optical Communications (ECOC), September 2014, Cannes, France. Paper P.2.4. <hal-01069366>

Zaoui, W. S.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
[Crossref]

Zhang, Y.

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (3)

X. Chen, C. Li, C.K.Y. Fung, S.M.G. Lo, and H.K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25(14), 1395–1397 (2013).
[Crossref]

D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

J. Lightw. Technol. (2)

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightw. Technol. 25(1), 151–156 (2007).
[Crossref]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightw. Technol. 27(5), 612–618 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Laser Photonics Rev. (1)

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photonics Rev. 8(6), L93–L97 (2014).
[Crossref]

Opt. Express (10)

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
[Crossref] [PubMed]

L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, “Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,” Opt. Express 21(15), 21556–21568 (2013).
[Crossref] [PubMed]

L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for Siphotonics: Reaching the −1dB coupling efficiency threshold,” Opt. Express 22(12), 14769–14781 (2014).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[Crossref] [PubMed]

S. Yang, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “High efficiency germanium-assisted grating coupler,” Opt. Express 22(25), 30607–30612 (2014).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

L. Lever, Z. Ikoni, and R. W. Kelsall, “Adiabatic mode coupling between SiGe photonic devices and SOI waveguides,” Opt. Express 20(28), 29500–29506 (2008).
[Crossref]

Opt. Lett. (4)

Other (4)

CEA-Leti Passive devices library: http://www-leti.cea.fr/fr/content/download/2397/29215/file/Plaquette_Photonique_num.pdf - Accessed: May 2015.

IMEC-ePIXfab Si-Photonics webpage: http://www.europractice-ic.com/SiPhotonics_technology_imec_passives.php Accessed: May 2015.

IHP Standard Passives webpage: http://www.epixfab.eu/technologies/ihp-standard-passives - Accessed: May 2015.

Y. Ding, H. Ou, C. Peucheret, and K. Yvind, “Fully-etched apodized fiber-to-chip grating coupler on the SOI platform with −0.78 dB coupling efficiency using photonic crystals and bonded Al mirror,” European Conference on Optical Communications (ECOC), September 2014, Cannes, France. Paper P.2.4. <hal-01069366>

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (21160 KB)     
» Visualization 2: MP4 (19989 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

State of the art for 1D apodized GC designs with and without back reflector. The theoretical results are reported with black triangles, while the experimental coupling efficiencies are reported with red dots. The best theoretical result of this work is denoted with a yellow triangle. The papers that present both theoretical and experimental results are indicated with black ovals.

Fig. 2
Fig. 2

(a) Sketch of an apodized 1D GC in a SOI platform. (b) CE spectra for the unconstrained apodized designs presented in this work: the 220 nm thick SOI (black curve) and the optimal 340 nm thick SOI (red curve). The CE values for the best uniform designs are indicated with horizontal dashed lines.

Fig. 3
Fig. 3

Global optimisation of 1D grating couplers for a 220 nm thick SOI architecture. (a) CE at 1550 nm for the optimized uniform gratings (black line and dots), for the linearly chirped configurations (dashed lines and open symbols), and for the apodized structures (solid lines and closed symbols). The un-constrained designs (wmin=0 nm) are reported with red lines and triangles, while the designs with UV-lithography constraints (wmin=100 nm) are indicated with blue lines and squares. The details of the optimal structures marked by large black circles in panel (a) are illustrated in panels (b) and (c), and are also reported in Table 1. SiO2 bars widths wi (b) and inter-bar distances pi+1pi (c) for the optimal configurations with and without UV-lithography constraints. The positions of the centre of the fibre mode for these configurations are denoted with vertical dashed lines in panel (b). For the un-constrained design, the optical power profile of the Gaussian fibre mode is indicated with a pink shadow.

Fig. 4
Fig. 4

Evolution of the CE at 1550 nm for three different linearly chirped configurations: The final CE in 220 nm SOI is capped to less than 65% (−1.9 dB). The sequences wi of the bars widths after 3000 generations are reported in the inset.

Fig. 5
Fig. 5

(a) Comparison between the optimized uniform design (black line and squares) and the apodized designs (red and blue lines and symbols) as functions of the SOI thickness. The red curve with dots refers to apodized GCs obtained from a linear chirp, while the blue curve with triangles refers to those obtained by optimising the structure reported in Ref. [5]. The theoretical CE of the record-efficiency design for a 1D GC with an Al back reflector (Ref. [13]) is denoted with a dashed horizontal black line. The CE of the apodized design with deep-UV lithographic constraints (wmin=100 nm) is denoted with an open green square. SiO2 bars widths wi (b) and inter-bar distances pi+1pi (c) for the apodized designs with S=340 nm enclosed in the black oval of panel (a). The optimal positions of the centre of the fibre mode are denoted with vertical dashed lines for each configuration. The pi and wi sequences for these optimal configurations are also reported in Table 1.

Fig. 6
Fig. 6

Comparison between the optimal uniform and apodized design with S=340 nm. Plot of the Ez field component for the uniform (panel (a) and Visualization 1) and apodized (panel (b) and Visualization 2) designs under continuous-wave excitation at 1550 nm. The apodized grating is described in Fig. 5 with a red line and symbols. The input and output directions are marked with yellow and black arrows, respectively.

Fig. 7
Fig. 7

Summary of the results of this work: CE spectra for the best uniform, linearly chirped and apodized configurations (with and without deep-UV lithography constraints) for S=220 nm and 340 nm. The absolute CE gain of the apodized design compared to the uniform one is also reported. A 50 nm shift is applied between adjacent spectra for better readability.

Fig. 8
Fig. 8

Numerical convergence of 2D-FDTD simulations of apodized gratings: the wavelength of the maximum CE (black line and dots) and the maximum CE (red line and triangles) for the apodized design in 340 nm SOI described in Fig. 5 with a red line and symbols.

Fig. 9
Fig. 9

Apodization of the best linear chirp for a SOI thickness of 220 nm and an etching depth E=100 nm (a–e). The different panels refer to different mutation amplitudes in the range 1–20 nm. The CE trends (current and best CE) are reported with black and red lines and symbols, respectively. The CE value for the starting chirped configuration is marked with a blue horizontal dashed line. (f) The maximum CE reached after 3000 generations as a function of the mutation amplitudes Δw = Δp.

Tables (1)

Tables Icon

Table 1 Sequences of the positions (pi) and widths (wi) of the SiO2 bars for the optimal apodized designs in 220 and 340 nm SOI obtained in this work

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

w i = w i , chirp + Δ w ,
p i = ( i 1 ) × p 0 + Δ p .

Metrics