Abstract

We have demonstrated a straightforward strategy to realize magnetic field enhancement through diffraction coupling of magnetic plasmon (MP) resonances by embedding the metamaterials consisting of a planar rectangular array of U-shaped metallic split-ring resonators (SRRs) into the substrate. Our method provides a more homogeneous dielectric background allowing stronger diffraction coupling of MP resonances among SRRs leading to strong suppression of the radiative damping. We observe that compared to the on-substrate metamaterials, the embedded ones lead to a narrow-band hybridized MP mode, which results from the interference between MP resonances in individual SRRs and an in-plane propagating collective surface mode arising from light diffraction. Associated with the excitation of this hybridized MP mode, a twenty-seven times enhancement of magnetic fields within the inner area of the SRRs is achieved as compared with the pure MP resonance. Moreover, we also found that besides the above requirement of homogeneous dielectric background, only a collective surface mode with its magnetic field of the same direction as the induced magnetic moment in the SRRs could mediate the excitation of such a hybridized MP mode.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing

Jing Chen, Wenfang Fan, Tao Zhang, Chaojun Tang, Xingyu Chen, Jingjing Wu, Danyang Li, and Ying Yu
Opt. Express 25(4) 3675-3681 (2017)

Metal-substrate-enhanced magnetic dipole resonance in metamaterials for high-performance refractive index sensing

Bo Liu, Chaojun Tang, Jing Chen, Ningyan Xie, Jun Yuan, Huang Tang, and Xiaoqin Zhu
Opt. Mater. Express 8(7) 2008-2016 (2018)

Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing

Jing Chen, Jun Yuan, Qian Zhang, Hongmin Ge, Chaojun Tang, Yang Liu, and Beini Guo
Opt. Mater. Express 8(2) 342-347 (2018)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Völlmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  2. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref] [PubMed]
  3. P. Mao, J. Chen, R. Q. Xu, G. Z. Xie, Y. J. Liu, G. H. Gao, and S. Wu, “Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties,” Appl. Phys., A Mater. Sci. Process. 117(3), 1067–1073 (2014).
    [Crossref]
  4. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [Crossref]
  5. J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
    [Crossref]
  6. Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
    [Crossref]
  7. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  8. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  9. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
    [Crossref] [PubMed]
  10. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
    [Crossref] [PubMed]
  11. S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotechnol. 17(11), 2813–2820 (2006).
    [Crossref]
  12. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [Crossref]
  13. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
    [Crossref] [PubMed]
  14. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
    [Crossref] [PubMed]
  15. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
    [Crossref] [PubMed]
  16. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  17. S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
    [Crossref] [PubMed]
  18. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
    [Crossref] [PubMed]
  19. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
    [Crossref] [PubMed]
  20. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7(168), 168 (2005).
    [Crossref]
  21. H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15(19), 12095–12101 (2007).
    [Crossref] [PubMed]
  22. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
    [Crossref] [PubMed]
  23. B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, “Magnetic response of split ring resonators (SRRs) at visible frequencies,” Opt. Express 18(3), 3210–3218 (2010).
    [Crossref] [PubMed]
  24. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [Crossref] [PubMed]
  25. H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15(3), 1076–1083 (2007).
    [Crossref] [PubMed]
  26. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
    [Crossref] [PubMed]
  27. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Wiley, 1984).
  28. S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
    [Crossref] [PubMed]
  29. H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Enhanced magnetic response in a gold nanowire pair array through coupling with Bloch surface waves,” Opt. Lett. 36(13), 2414–2416 (2011).
    [Crossref] [PubMed]
  30. C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
    [Crossref]
  31. R. Adato, A. A. Yanik, C. H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010).
    [Crossref] [PubMed]
  32. J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
    [Crossref]
  33. A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “The near-field properties of nanoplasmonic necklaces have been optimized for plasmon-enhanced spectroscopy and sensing,” ACS Nano 5(8), 6578–6585 (2011).
    [Crossref] [PubMed]
  34. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [Crossref] [PubMed]
  35. V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60(8), 5359–5365 (1999).
    [Crossref]
  36. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
    [Crossref]
  37. J. Chen, R. Q. Xu, P. Mao, Y. J. Liu, C. J. Tang, J. Q. Liu, and L. B. Zhang, “Fanolike resonance in light transmission through a planar array of silver circular disks,” Mater. Lett. 136, 205–208 (2014).
    [Crossref]

2015 (1)

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

2014 (3)

J. Chen, R. Q. Xu, P. Mao, Y. J. Liu, C. J. Tang, J. Q. Liu, and L. B. Zhang, “Fanolike resonance in light transmission through a planar array of silver circular disks,” Mater. Lett. 136, 205–208 (2014).
[Crossref]

P. Mao, J. Chen, R. Q. Xu, G. Z. Xie, Y. J. Liu, G. H. Gao, and S. Wu, “Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties,” Appl. Phys., A Mater. Sci. Process. 117(3), 1067–1073 (2014).
[Crossref]

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

2013 (1)

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

2011 (7)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “The near-field properties of nanoplasmonic necklaces have been optimized for plasmon-enhanced spectroscopy and sensing,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Enhanced magnetic response in a gold nanowire pair array through coupling with Bloch surface waves,” Opt. Lett. 36(13), 2414–2416 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (3)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[Crossref] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

2008 (2)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (3)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
[Crossref] [PubMed]

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotechnol. 17(11), 2813–2820 (2006).
[Crossref]

2005 (5)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7(168), 168 (2005).
[Crossref]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[Crossref] [PubMed]

2004 (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

2001 (1)

S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
[Crossref] [PubMed]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

1999 (2)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60(8), 5359–5365 (1999).
[Crossref]

Adato, R.

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Altug, H.

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7(168), 168 (2005).
[Crossref]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Boltasseva, A.

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Bulu, I.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7(168), 168 (2005).
[Crossref]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Cai, W.

Cai, Z. J.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Cao, Z. S.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Chang, W. S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chen, J.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

J. Chen, R. Q. Xu, P. Mao, Y. J. Liu, C. J. Tang, J. Q. Liu, and L. B. Zhang, “Fanolike resonance in light transmission through a planar array of silver circular disks,” Mater. Lett. 136, 205–208 (2014).
[Crossref]

P. Mao, J. Chen, R. Q. Xu, G. Z. Xie, Y. J. Liu, G. H. Gao, and S. Wu, “Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties,” Appl. Phys., A Mater. Sci. Process. 117(3), 1067–1073 (2014).
[Crossref]

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

Chen, T.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

Chen, Z.

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Chettiar, U. K.

Dal Negro, L.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “The near-field properties of nanoplasmonic necklaces have been optimized for plasmon-enhanced spectroscopy and sensing,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

De La Rue, R. M.

Decker, M.

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
[Crossref] [PubMed]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Drachev, V. P.

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Fu, L.

Gao, G. H.

P. Mao, J. Chen, R. Q. Xu, G. Z. Xie, Y. J. Liu, G. H. Gao, and S. Wu, “Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties,” Appl. Phys., A Mater. Sci. Process. 117(3), 1067–1073 (2014).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Giannini, V.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15(19), 12095–12101 (2007).
[Crossref] [PubMed]

S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
[Crossref] [PubMed]

Gómez Rivas, J.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Gu, G.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Guo, H.

Guven, K.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7(168), 168 (2005).
[Crossref]

Halas, N. J.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Hu, Y.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Jiang, Y.

Johnson, N. P.

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Kafesaki, M.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7(168), 168 (2005).
[Crossref]

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Khokhar, A. Z.

Kildishev, A. V.

Klein, M. W.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Kuhl, J.

S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
[Crossref] [PubMed]

Lahiri, B.

Lal, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Linden, S.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
[Crossref] [PubMed]

Link, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Liu, G. Q.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Liu, H.

Liu, J. Q.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

J. Chen, R. Q. Xu, P. Mao, Y. J. Liu, C. J. Tang, J. Q. Liu, and L. B. Zhang, “Fanolike resonance in light transmission through a planar array of silver circular disks,” Mater. Lett. 136, 205–208 (2014).
[Crossref]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15(19), 12095–12101 (2007).
[Crossref] [PubMed]

Liu, X. S.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Liu, Y. J.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

J. Chen, R. Q. Xu, P. Mao, Y. J. Liu, C. J. Tang, J. Q. Liu, and L. B. Zhang, “Fanolike resonance in light transmission through a planar array of silver circular disks,” Mater. Lett. 136, 205–208 (2014).
[Crossref]

P. Mao, J. Chen, R. Q. Xu, G. Z. Xie, Y. J. Liu, G. H. Gao, and S. Wu, “Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties,” Appl. Phys., A Mater. Sci. Process. 117(3), 1067–1073 (2014).
[Crossref]

Liu, Z. Q.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Mao, P.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

J. Chen, R. Q. Xu, P. Mao, Y. J. Liu, C. J. Tang, J. Q. Liu, and L. B. Zhang, “Fanolike resonance in light transmission through a planar array of silver circular disks,” Mater. Lett. 136, 205–208 (2014).
[Crossref]

P. Mao, J. Chen, R. Q. Xu, G. Z. Xie, Y. J. Liu, G. H. Gao, and S. Wu, “Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties,” Appl. Phys., A Mater. Sci. Process. 117(3), 1067–1073 (2014).
[Crossref]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

McMeekin, S. G.

Meyrath, T. P.

Modinos, A.

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60(8), 5359–5365 (1999).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Nordlander, P.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Odom, T. W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

Ozbay, E.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7(168), 168 (2005).
[Crossref]

Pan, J.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Pasquale, A. J.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “The near-field properties of nanoplasmonic necklaces have been optimized for plasmon-enhanced spectroscopy and sensing,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

Pei, Y.

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Reinhard, B. M.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “The near-field properties of nanoplasmonic necklaces have been optimized for plasmon-enhanced spectroscopy and sensing,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Sarychev, A. K.

Schatz, G. C.

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotechnol. 17(11), 2813–2820 (2006).
[Crossref]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Schweizer, H.

Shalaev, V. M.

Shao, H. B.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Shvets, G.

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7(168), 168 (2005).
[Crossref]

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Stefanou, N.

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60(8), 5359–5365 (1999).
[Crossref]

Sun, X.

Tang, C. J.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

J. Chen, R. Q. Xu, P. Mao, Y. J. Liu, C. J. Tang, J. Q. Liu, and L. B. Zhang, “Fanolike resonance in light transmission through a planar array of silver circular disks,” Mater. Lett. 136, 205–208 (2014).
[Crossref]

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Van Duyne, R. P.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Vecchi, G.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Wang, Z. L.

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Wegener, M.

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Wu, C. H.

Wu, S.

P. Mao, J. Chen, R. Q. Xu, G. Z. Xie, Y. J. Liu, G. H. Gao, and S. Wu, “Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties,” Appl. Phys., A Mater. Sci. Process. 117(3), 1067–1073 (2014).
[Crossref]

Xie, G. Z.

P. Mao, J. Chen, R. Q. Xu, G. Z. Xie, Y. J. Liu, G. H. Gao, and S. Wu, “Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties,” Appl. Phys., A Mater. Sci. Process. 117(3), 1067–1073 (2014).
[Crossref]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Xu, R. Q.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

J. Chen, R. Q. Xu, P. Mao, Y. J. Liu, C. J. Tang, J. Q. Liu, and L. B. Zhang, “Fanolike resonance in light transmission through a planar array of silver circular disks,” Mater. Lett. 136, 205–208 (2014).
[Crossref]

P. Mao, J. Chen, R. Q. Xu, G. Z. Xie, Y. J. Liu, G. H. Gao, and S. Wu, “Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties,” Appl. Phys., A Mater. Sci. Process. 117(3), 1067–1073 (2014).
[Crossref]

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

Yan, Z. D.

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

Yanik, A. A.

Yannopapas, V.

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60(8), 5359–5365 (1999).
[Crossref]

Yao, F.

Yuan, H. K.

Zentgraf, T.

Zhan, P.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

Zhang, L. B.

J. Chen, R. Q. Xu, P. Mao, Y. J. Liu, C. J. Tang, J. Q. Liu, and L. B. Zhang, “Fanolike resonance in light transmission through a planar array of silver circular disks,” Mater. Lett. 136, 205–208 (2014).
[Crossref]

Zhang, X. N.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Zhang, Y. T.

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

Zhou, H. Q.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Zhou, W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

Zou, S.

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotechnol. 17(11), 2813–2820 (2006).
[Crossref]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

ACS Nano (1)

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “The near-field properties of nanoplasmonic necklaces have been optimized for plasmon-enhanced spectroscopy and sensing,” ACS Nano 5(8), 6578–6585 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

P. Mao, J. Chen, R. Q. Xu, G. Z. Xie, Y. J. Liu, G. H. Gao, and S. Wu, “Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties,” Appl. Phys., A Mater. Sci. Process. 117(3), 1067–1073 (2014).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Mater. Lett. (1)

J. Chen, R. Q. Xu, P. Mao, Y. J. Liu, C. J. Tang, J. Q. Liu, and L. B. Zhang, “Fanolike resonance in light transmission through a planar array of silver circular disks,” Mater. Lett. 136, 205–208 (2014).
[Crossref]

Nano Lett. (1)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Nanotechnol. (1)

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotechnol. 17(11), 2813–2820 (2006).
[Crossref]

Nat. Mater. (1)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

New J. Phys. (1)

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7(168), 168 (2005).
[Crossref]

Opt. Commun. (1)

J. Chen, R. Q. Xu, Z. D. Yan, C. J. Tang, Z. Chen, and Z. L. Wang, “Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy,” Opt. Commun. 307, 73–75 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (3)

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[Crossref]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60(8), 5359–5365 (1999).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Phys. Rev. Lett. (8)

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97(8), 083902 (2006).
[Crossref] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
[Crossref] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Plasmonics (1)

J. Chen, R. Q. Xu, P. Mao, Y. T. Zhang, Y. J. Liu, C. J. Tang, J. Q. Liu, and T. Chen, “Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10(2), 341–346 (2015).
[Crossref]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Science (2)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Other (2)

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Wiley, 1984).

U. Kreibig and M. Völlmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic view of the U-shaped Ag SRR arrays and the incident light polarization configuration together with a coordinate system. The periods along the x and y axes are Px and Py, respectively. The U-shaped Ag SRR array is buried beneath the silica substrate (a) and directly placed on the silica substrate (b).
Fig. 2
Fig. 2 (a) Normal-incidence transmission spectra of on-substrate and embedded U-shaped Ag SRR arrays, the two arrays have the same periods in both the x and y direction (Px = 400 nm and Py = 1250 nm). Black dotted line represents the transmission spectrum of the on-substrate U-shaped Ag SRR array and red solid line represents the transmission spectrum of the embedded U-shaped Ag SRR array. The inset is the transmission spectrum of the embedded U-shaped Ag SRR array (Px = 400 nm and Py = 600 nm). (b) and (c) Normalized magnetic field intensity distributions (H/Hin)2 on the xoy plane for the dip 1 and the dip 2. Black solid line outlines the regions of U-shaped Ag SRRs.
Fig. 3
Fig. 3 (a)-(c) Normalized electric field intensity components (Ex/Ein)2, (Ey/Ein)2 and (Ez/Ein)2 on the xoy plane for the dip 2. (d)-(f) Normalized magnetic field intensity components (Hx/Hin)2, (Hy/Hin)2 and (Hz/Hin)2 on the xoy plane for the dip 2. (g) Normal-incidence transmission spectrum of the embedded SRR array with similar structural parameters but with different array periods (Px = 1250 nm and Py = 400 nm), in which the transmission spectrum of the embedded SRR array mentioned above (Px = 400 nm and Py = 1250 nm) is also shown for comparison purpose.
Fig. 4
Fig. 4 (a) Normal-incidence transmission spectra of the U-shaped Ag SRR arrays (Px = 400 nm and Py = 1250 nm) embedded beneath the substrate with the buried depth h = 50 nm, 75 nm, 100 nm, 125 nm, and 150 nm, respectively, in which the transmission spectrum of the on-substrate SRR array is also shown for comparison. (b)-(f) Normalized magnetic field intensity distributions (H/Hin)2 on the xoy plane for the corresponding narrow-band hybridized MP modes as shown by a dashed-line box in (a). Black solid line outlines the regions of U-shaped Ag SRRs.

Metrics