Abstract

Random laser actions in ultraviolet and visible regions have been demonstrated based on the composites consisting of bio-inspired diatom frustules. Owing to the low optical loss derived from porous network of diatom structures, we report wide spectrum range random lasers arising from GaN film and Rh6G dye via using biological diatoms as scattering centers. Interestingly, both ultraviolet and visible-range random laser actions with very sharp peaks can be easily obtained, with the average length of optics cavity closed to the average size of diatom frustules in both cases, indicating the excellent optical confinement of diatom frustules. It is expected that the first proof of concept shown here can pave an avenue toward future broad-range random lasers and eco-friendly biophotonics devices with high performance and wide spectrum response.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chemical and optical characterization of Psammodictyon panduriforme (Gregory) Mann comb. nov. (Bacillariophyta) frustules

Ed Camargo, Perez Coca John Jaime, Chia-Feng Lin, Ming-Shiou Lin, Tzu-Yun Yu, Meng-Chuan Wu, Su-Yuan Lai, and Min-Ying Wang
Opt. Mater. Express 6(5) 1436-1443 (2016)

Dopamine sensing and measurement using threshold and spectral measurements in random lasers

Wan Zakiah Wan Ismail, Guozhen Liu, Kai Zhang, Ewa M. Goldys, and Judith M. Dawes
Opt. Express 24(2) A85-A91 (2016)

Enhanced random lasing in ZnO nanocombs assisted by Fabry–Perot resonance

Yungting Chen and Yangfang Chen
Opt. Express 19(9) 8728-8734 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  2. H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  3. L. Yang, G. Feng, J. Yi, K. Yao, G. Deng, and S. Zhou, “Effective random laser action in Rhodamine 6G solution with Al nanoparticles,” Appl. Opt. 50(13), 1816–1821 (2011).
    [Crossref] [PubMed]
  4. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
    [Crossref]
  5. R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12(2), 024010 (2010).
    [Crossref]
  6. C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
    [Crossref] [PubMed]
  7. B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
    [Crossref] [PubMed]
  8. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref] [PubMed]
  9. X. Wu and H. Cao, “Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems,” Phys. Rev. A 77(1), 013832 (2008).
    [Crossref]
  10. D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: the pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
    [Crossref]
  11. Y. Chen and Y. Chen, “Enhanced random lasing in ZnO nanocombs assisted by Fabry-Perot resonance,” Opt. Express 19(9), 8728–8734 (2011).
    [Crossref] [PubMed]
  12. T. Nakamura, T. Hosaka, and S. Adachi, “Gold-nanoparticle-assisted random lasing from powdered GaN,” Opt. Express 19(2), 467–475 (2011).
    [Crossref] [PubMed]
  13. X. Wu, Q. Chen, Y. Sun, and X. Fan, “Bio-inspired optofluidic lasers with luciferin,” Appl. Phys. Lett. 102(20), 203706 (2013).
    [Crossref]
  14. O. Shimomura, Bioluminescence: Chemical Principles and Methods (World Scientific, 2012).
  15. R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
    [Crossref]
  16. A. Camposeo, P. Del Carro, L. Persano, K. Cyprych, A. Szukalski, L. Sznitko, J. Mysliwiec, and D. Pisignano, “Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA,” ACS Nano 8(10), 10893–10898 (2014).
    [Crossref] [PubMed]
  17. M. V. dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. de Melo, S. J. L. Ribeiro, A. S. L. Gomes, and C. B. de Araújo, “Random laser action from flexible biocellulose-based device,” J. Appl. Phys. 115(8), 083108 (2014).
    [Crossref]
  18. I. Viola, N. Ghofraniha, A. Zacheo, V. Arima, C. Conti, and G. Gigli, “Random laser emission from a paper-based device,” J. Mater. Chem. C 1(48), 8128–8133 (2013).
    [Crossref]
  19. A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
    [Crossref] [PubMed]
  20. C. Jeffryes, J. Campbell, H. Li, J. Jiao, and G. Rorrer, “The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices,” Energ. Environ. Sci. 4(10), 3930–3941 (2011).
    [Crossref]
  21. M. Balucani, V. Bondarenko, L. Dolgyi, G. Lamedica, A. Ricciardelli, E. Viarengo, N. Vorozov, and A. Ferrari, “Bending properties in oxidized porous silicon waveguides,” Mater. Sci. Semicond. Process. 3(5-6), 351–355 (2000).
    [Crossref]
  22. F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
    [Crossref]
  23. G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice (Academic, 1999).
  24. R. Dingle and M. Ilegems, “Donor-acceptor pair recombination in GaN,” Solid State Commun. 9(3), 175–180 (1971).
    [Crossref]
  25. O. Lagerstedt and B. Monemar, “Luminescence in epitaxial GaN: Cd,” J. Appl. Phys. 45(5), 2266–2272 (1974).
    [Crossref]
  26. S. J. Pearton, GaN and Related Materials (Taylor & Francis, 1997).
  27. C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. L. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
    [Crossref] [PubMed]
  28. O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149(4-6), 277–282 (1998).
    [Crossref]
  29. G. J. Linford, E. R. Peressini, W. R. Sooy, and M. L. Spaeth, “Very long lasers,” Appl. Opt. 13(2), 379–390 (1974).
    [Crossref] [PubMed]
  30. A. E. Siegman, Lasers (University Science Books, 1986).
  31. E. I. Rashba and G. E. Gergenishvili, “Edge absorption theory in semiconductors,” Sov. Phys. Solid State 4, 759–760 (1962).
  32. C.-S. Wang, C.-S. Liau, T.-M. Sun, Y.-C. Chen, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition,” Sci. Rep. 5, 8965 (2015).
    [Crossref] [PubMed]
  33. H. K. Liang, S. F. Yu, and H. Y. Yang, “Directional and controllable edge-emitting ZnO ultraviolet random laser diodes,” Appl. Phys. Lett. 96(10), 101116 (2010).
    [Crossref]
  34. R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
    [Crossref] [PubMed]
  35. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [Crossref] [PubMed]
  36. D. G. Rabus, Integrated Ring Resonators: The Compendium (Springer Berlin Heidelberg, 2007).
  37. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
    [Crossref]
  38. V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
    [Crossref]

2015 (2)

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

C.-S. Wang, C.-S. Liau, T.-M. Sun, Y.-C. Chen, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition,” Sci. Rep. 5, 8965 (2015).
[Crossref] [PubMed]

2014 (4)

F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
[Crossref]

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
[Crossref] [PubMed]

A. Camposeo, P. Del Carro, L. Persano, K. Cyprych, A. Szukalski, L. Sznitko, J. Mysliwiec, and D. Pisignano, “Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA,” ACS Nano 8(10), 10893–10898 (2014).
[Crossref] [PubMed]

M. V. dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. de Melo, S. J. L. Ribeiro, A. S. L. Gomes, and C. B. de Araújo, “Random laser action from flexible biocellulose-based device,” J. Appl. Phys. 115(8), 083108 (2014).
[Crossref]

2013 (3)

I. Viola, N. Ghofraniha, A. Zacheo, V. Arima, C. Conti, and G. Gigli, “Random laser emission from a paper-based device,” J. Mater. Chem. C 1(48), 8128–8133 (2013).
[Crossref]

X. Wu, Q. Chen, Y. Sun, and X. Fan, “Bio-inspired optofluidic lasers with luciferin,” Appl. Phys. Lett. 102(20), 203706 (2013).
[Crossref]

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

2012 (4)

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: the pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. L. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (5)

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

C. Jeffryes, J. Campbell, H. Li, J. Jiao, and G. Rorrer, “The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices,” Energ. Environ. Sci. 4(10), 3930–3941 (2011).
[Crossref]

L. Yang, G. Feng, J. Yi, K. Yao, G. Deng, and S. Zhou, “Effective random laser action in Rhodamine 6G solution with Al nanoparticles,” Appl. Opt. 50(13), 1816–1821 (2011).
[Crossref] [PubMed]

Y. Chen and Y. Chen, “Enhanced random lasing in ZnO nanocombs assisted by Fabry-Perot resonance,” Opt. Express 19(9), 8728–8734 (2011).
[Crossref] [PubMed]

T. Nakamura, T. Hosaka, and S. Adachi, “Gold-nanoparticle-assisted random lasing from powdered GaN,” Opt. Express 19(2), 467–475 (2011).
[Crossref] [PubMed]

2010 (2)

R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12(2), 024010 (2010).
[Crossref]

H. K. Liang, S. F. Yu, and H. Y. Yang, “Directional and controllable edge-emitting ZnO ultraviolet random laser diodes,” Appl. Phys. Lett. 96(10), 101116 (2010).
[Crossref]

2008 (2)

X. Wu and H. Cao, “Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems,” Phys. Rev. A 77(1), 013832 (2008).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

2007 (1)

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[Crossref] [PubMed]

2004 (1)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

2000 (1)

M. Balucani, V. Bondarenko, L. Dolgyi, G. Lamedica, A. Ricciardelli, E. Viarengo, N. Vorozov, and A. Ferrari, “Bending properties in oxidized porous silicon waveguides,” Mater. Sci. Semicond. Process. 3(5-6), 351–355 (2000).
[Crossref]

1999 (1)

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

1998 (2)

O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149(4-6), 277–282 (1998).
[Crossref]

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

1974 (2)

O. Lagerstedt and B. Monemar, “Luminescence in epitaxial GaN: Cd,” J. Appl. Phys. 45(5), 2266–2272 (1974).
[Crossref]

G. J. Linford, E. R. Peressini, W. R. Sooy, and M. L. Spaeth, “Very long lasers,” Appl. Opt. 13(2), 379–390 (1974).
[Crossref] [PubMed]

1971 (1)

R. Dingle and M. Ilegems, “Donor-acceptor pair recombination in GaN,” Solid State Commun. 9(3), 175–180 (1971).
[Crossref]

1962 (1)

E. I. Rashba and G. E. Gergenishvili, “Edge absorption theory in semiconductors,” Sov. Phys. Solid State 4, 759–760 (1962).

Adachi, S.

Antonucci, A.

F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
[Crossref]

Arima, V.

I. Viola, N. Ghofraniha, A. Zacheo, V. Arima, C. Conti, and G. Gigli, “Random laser emission from a paper-based device,” J. Mater. Chem. C 1(48), 8128–8133 (2013).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Baldo, M.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Balucani, M.

M. Balucani, V. Bondarenko, L. Dolgyi, G. Lamedica, A. Ricciardelli, E. Viarengo, N. Vorozov, and A. Ferrari, “Bending properties in oxidized porous silicon waveguides,” Mater. Sci. Semicond. Process. 3(5-6), 351–355 (2000).
[Crossref]

Barbosa-Silva, R.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Barud, H. S.

M. V. dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. de Melo, S. J. L. Ribeiro, A. S. L. Gomes, and C. B. de Araújo, “Random laser action from flexible biocellulose-based device,” J. Appl. Phys. 115(8), 083108 (2014).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Bondarenko, V.

M. Balucani, V. Bondarenko, L. Dolgyi, G. Lamedica, A. Ricciardelli, E. Viarengo, N. Vorozov, and A. Ferrari, “Bending properties in oxidized porous silicon waveguides,” Mater. Sci. Semicond. Process. 3(5-6), 351–355 (2000).
[Crossref]

Bulovic, V.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Burrows, P. E.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Campbell, J.

C. Jeffryes, J. Campbell, H. Li, J. Jiao, and G. Rorrer, “The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices,” Energ. Environ. Sci. 4(10), 3930–3941 (2011).
[Crossref]

Camposeo, A.

A. Camposeo, P. Del Carro, L. Persano, K. Cyprych, A. Szukalski, L. Sznitko, J. Mysliwiec, and D. Pisignano, “Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA,” ACS Nano 8(10), 10893–10898 (2014).
[Crossref] [PubMed]

Cao, H.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

X. Wu and H. Cao, “Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems,” Phys. Rev. A 77(1), 013832 (2008).
[Crossref]

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Casalboni, M.

F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
[Crossref]

Cavicchioli, M.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Cerjan, A.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Chang, R.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Chang, T.-Y.

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
[Crossref] [PubMed]

Chaumont, D.

Chen, Q.

X. Wu, Q. Chen, Y. Sun, and X. Fan, “Bio-inspired optofluidic lasers with luciferin,” Appl. Phys. Lett. 102(20), 203706 (2013).
[Crossref]

Chen, R.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

Chen, Y.

Chen, Y.-C.

C.-S. Wang, C.-S. Liau, T.-M. Sun, Y.-C. Chen, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition,” Sci. Rep. 5, 8965 (2015).
[Crossref] [PubMed]

Chen, Y.-F.

C.-S. Wang, C.-S. Liau, T.-M. Sun, Y.-C. Chen, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition,” Sci. Rep. 5, 8965 (2015).
[Crossref] [PubMed]

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
[Crossref] [PubMed]

Choma, M. A.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Christovan, L. M.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Congestri, R.

F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
[Crossref]

Conti, C.

I. Viola, N. Ghofraniha, A. Zacheo, V. Arima, C. Conti, and G. Gigli, “Random laser emission from a paper-based device,” J. Mater. Chem. C 1(48), 8128–8133 (2013).
[Crossref]

Cyprych, K.

A. Camposeo, P. Del Carro, L. Persano, K. Cyprych, A. Szukalski, L. Sznitko, J. Mysliwiec, and D. Pisignano, “Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA,” ACS Nano 8(10), 10893–10898 (2014).
[Crossref] [PubMed]

da Silva, R. R.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

De Angelis, R.

F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
[Crossref]

de Araujo, C. B.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

de Araújo, C. B.

M. V. dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. de Melo, S. J. L. Ribeiro, A. S. L. Gomes, and C. B. de Araújo, “Random laser action from flexible biocellulose-based device,” J. Appl. Phys. 115(8), 083108 (2014).
[Crossref]

C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. L. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
[Crossref] [PubMed]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

de Melo, L. S. A.

M. V. dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. de Melo, S. J. L. Ribeiro, A. S. L. Gomes, and C. B. de Araújo, “Random laser action from flexible biocellulose-based device,” J. Appl. Phys. 115(8), 083108 (2014).
[Crossref]

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Del Carro, P.

A. Camposeo, P. Del Carro, L. Persano, K. Cyprych, A. Szukalski, L. Sznitko, J. Mysliwiec, and D. Pisignano, “Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA,” ACS Nano 8(10), 10893–10898 (2014).
[Crossref] [PubMed]

Deng, G.

Dingle, R.

R. Dingle and M. Ilegems, “Donor-acceptor pair recombination in GaN,” Solid State Commun. 9(3), 175–180 (1971).
[Crossref]

Dolgyi, L.

M. Balucani, V. Bondarenko, L. Dolgyi, G. Lamedica, A. Ricciardelli, E. Viarengo, N. Vorozov, and A. Ferrari, “Bending properties in oxidized porous silicon waveguides,” Mater. Sci. Semicond. Process. 3(5-6), 351–355 (2000).
[Crossref]

Dominguez, C. T.

M. V. dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. de Melo, S. J. L. Ribeiro, A. S. L. Gomes, and C. B. de Araújo, “Random laser action from flexible biocellulose-based device,” J. Appl. Phys. 115(8), 083108 (2014).
[Crossref]

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. L. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
[Crossref] [PubMed]

dos Santos, M. V.

M. V. dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. de Melo, S. J. L. Ribeiro, A. S. L. Gomes, and C. B. de Araújo, “Random laser action from flexible biocellulose-based device,” J. Appl. Phys. 115(8), 083108 (2014).
[Crossref]

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Fan, X.

X. Wu, Q. Chen, Y. Sun, and X. Fan, “Bio-inspired optofluidic lasers with luciferin,” Appl. Phys. Lett. 102(20), 203706 (2013).
[Crossref]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Feng, G.

Ferrari, A.

M. Balucani, V. Bondarenko, L. Dolgyi, G. Lamedica, A. Ricciardelli, E. Viarengo, N. Vorozov, and A. Ferrari, “Bending properties in oxidized porous silicon waveguides,” Mater. Sci. Semicond. Process. 3(5-6), 351–355 (2000).
[Crossref]

Forrest, S. R.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Gergenishvili, G. E.

E. I. Rashba and G. E. Gergenishvili, “Edge absorption theory in semiconductors,” Sov. Phys. Solid State 4, 759–760 (1962).

Ghofraniha, N.

I. Viola, N. Ghofraniha, A. Zacheo, V. Arima, C. Conti, and G. Gigli, “Random laser emission from a paper-based device,” J. Mater. Chem. C 1(48), 8128–8133 (2013).
[Crossref]

Gigli, G.

I. Viola, N. Ghofraniha, A. Zacheo, V. Arima, C. Conti, and G. Gigli, “Random laser emission from a paper-based device,” J. Mater. Chem. C 1(48), 8128–8133 (2013).
[Crossref]

Gomes, A. S. L.

M. V. dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. de Melo, S. J. L. Ribeiro, A. S. L. Gomes, and C. B. de Araújo, “Random laser action from flexible biocellulose-based device,” J. Appl. Phys. 115(8), 083108 (2014).
[Crossref]

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. L. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
[Crossref] [PubMed]

Ho, S.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Hosaka, T.

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Huang, X.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Ilegems, M.

R. Dingle and M. Ilegems, “Donor-acceptor pair recombination in GaN,” Solid State Commun. 9(3), 175–180 (1971).
[Crossref]

Jeffryes, C.

C. Jeffryes, J. Campbell, H. Li, J. Jiao, and G. Rorrer, “The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices,” Energ. Environ. Sci. 4(10), 3930–3941 (2011).
[Crossref]

Jiao, J.

C. Jeffryes, J. Campbell, H. Li, J. Jiao, and G. Rorrer, “The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices,” Energ. Environ. Sci. 4(10), 3930–3941 (2011).
[Crossref]

Karnutsch, C.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: the pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Khalfin, V. B.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Kostovski, G.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: the pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Kozlov, V. G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Lacroute, Y.

Lagerstedt, O.

O. Lagerstedt and B. Monemar, “Luminescence in epitaxial GaN: Cd,” J. Appl. Phys. 45(5), 2266–2272 (1974).
[Crossref]

Lamastra, F. R.

F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
[Crossref]

Lamedica, G.

M. Balucani, V. Bondarenko, L. Dolgyi, G. Lamedica, A. Ricciardelli, E. Viarengo, N. Vorozov, and A. Ferrari, “Bending properties in oxidized porous silicon waveguides,” Mater. Sci. Semicond. Process. 3(5-6), 351–355 (2000).
[Crossref]

Lee, M. L.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Li, H.

C. Jeffryes, J. Campbell, H. Li, J. Jiao, and G. Rorrer, “The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices,” Energ. Environ. Sci. 4(10), 3930–3941 (2011).
[Crossref]

Liang, H. K.

H. K. Liang, S. F. Yu, and H. Y. Yang, “Directional and controllable edge-emitting ZnO ultraviolet random laser diodes,” Appl. Phys. Lett. 96(10), 101116 (2010).
[Crossref]

Liau, C.-S.

C.-S. Wang, C.-S. Liau, T.-M. Sun, Y.-C. Chen, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition,” Sci. Rep. 5, 8965 (2015).
[Crossref] [PubMed]

Lin, T.-Y.

C.-S. Wang, C.-S. Liau, T.-M. Sun, Y.-C. Chen, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition,” Sci. Rep. 5, 8965 (2015).
[Crossref] [PubMed]

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
[Crossref] [PubMed]

Linford, G. J.

Ling, B.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Melino, S.

F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
[Crossref]

Mitchell, A.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: the pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Monemar, B.

O. Lagerstedt and B. Monemar, “Luminescence in epitaxial GaN: Cd,” J. Appl. Phys. 45(5), 2266–2272 (1974).
[Crossref]

Mysliwiec, J.

A. Camposeo, P. Del Carro, L. Persano, K. Cyprych, A. Szukalski, L. Sznitko, J. Mysliwiec, and D. Pisignano, “Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA,” ACS Nano 8(10), 10893–10898 (2014).
[Crossref] [PubMed]

Nakamura, T.

Nanni, F.

F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
[Crossref]

Parker, A. R.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[Crossref] [PubMed]

Parthasarathy, G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Peressini, E. R.

Persano, L.

A. Camposeo, P. Del Carro, L. Persano, K. Cyprych, A. Szukalski, L. Sznitko, J. Mysliwiec, and D. Pisignano, “Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA,” ACS Nano 8(10), 10893–10898 (2014).
[Crossref] [PubMed]

Pisignano, D.

A. Camposeo, P. Del Carro, L. Persano, K. Cyprych, A. Szukalski, L. Sznitko, J. Mysliwiec, and D. Pisignano, “Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA,” ACS Nano 8(10), 10893–10898 (2014).
[Crossref] [PubMed]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12(2), 024010 (2010).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Prosposito, P.

F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
[Crossref]

Rashba, E. I.

E. I. Rashba and G. E. Gergenishvili, “Edge absorption theory in semiconductors,” Sov. Phys. Solid State 4, 759–760 (1962).

Redding, B.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Ribeiro, S. J. L.

M. V. dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. de Melo, S. J. L. Ribeiro, A. S. L. Gomes, and C. B. de Araújo, “Random laser action from flexible biocellulose-based device,” J. Appl. Phys. 115(8), 083108 (2014).
[Crossref]

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

Ricciardelli, A.

M. Balucani, V. Bondarenko, L. Dolgyi, G. Lamedica, A. Ricciardelli, E. Viarengo, N. Vorozov, and A. Ferrari, “Bending properties in oxidized porous silicon waveguides,” Mater. Sci. Semicond. Process. 3(5-6), 351–355 (2000).
[Crossref]

Rorrer, G.

C. Jeffryes, J. Campbell, H. Li, J. Jiao, and G. Rorrer, “The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices,” Energ. Environ. Sci. 4(10), 3930–3941 (2011).
[Crossref]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Sacilotti, M.

Salvatori, D.

F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
[Crossref]

Schiavon, J. V.

M. V. dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. de Melo, S. J. L. Ribeiro, A. S. L. Gomes, and C. B. de Araújo, “Random laser action from flexible biocellulose-based device,” J. Appl. Phys. 115(8), 083108 (2014).
[Crossref]

Seelig, E.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Sooy, W. R.

Spaeth, M. L.

Stone, A. D.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

Sun, H. D.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

Sun, T.-M.

C.-S. Wang, C.-S. Liau, T.-M. Sun, Y.-C. Chen, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition,” Sci. Rep. 5, 8965 (2015).
[Crossref] [PubMed]

Sun, X. W.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

Sun, Y.

X. Wu, Q. Chen, Y. Sun, and X. Fan, “Bio-inspired optofluidic lasers with luciferin,” Appl. Phys. Lett. 102(20), 203706 (2013).
[Crossref]

Svelto, C.

O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149(4-6), 277–282 (1998).
[Crossref]

Svelto, O.

O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149(4-6), 277–282 (1998).
[Crossref]

Sznitko, L.

A. Camposeo, P. Del Carro, L. Persano, K. Cyprych, A. Szukalski, L. Sznitko, J. Mysliwiec, and D. Pisignano, “Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA,” ACS Nano 8(10), 10893–10898 (2014).
[Crossref] [PubMed]

Szukalski, A.

A. Camposeo, P. Del Carro, L. Persano, K. Cyprych, A. Szukalski, L. Sznitko, J. Mysliwiec, and D. Pisignano, “Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA,” ACS Nano 8(10), 10893–10898 (2014).
[Crossref] [PubMed]

Taccheo, S.

O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149(4-6), 277–282 (1998).
[Crossref]

Thompson, M. E.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Townley, H. E.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[Crossref] [PubMed]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12(2), 024010 (2010).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Viarengo, E.

M. Balucani, V. Bondarenko, L. Dolgyi, G. Lamedica, A. Ricciardelli, E. Viarengo, N. Vorozov, and A. Ferrari, “Bending properties in oxidized porous silicon waveguides,” Mater. Sci. Semicond. Process. 3(5-6), 351–355 (2000).
[Crossref]

Viola, I.

I. Viola, N. Ghofraniha, A. Zacheo, V. Arima, C. Conti, and G. Gigli, “Random laser emission from a paper-based device,” J. Mater. Chem. C 1(48), 8128–8133 (2013).
[Crossref]

Vorozov, N.

M. Balucani, V. Bondarenko, L. Dolgyi, G. Lamedica, A. Ricciardelli, E. Viarengo, N. Vorozov, and A. Ferrari, “Bending properties in oxidized porous silicon waveguides,” Mater. Sci. Semicond. Process. 3(5-6), 351–355 (2000).
[Crossref]

Wang, C.-S.

C.-S. Wang, C.-S. Liau, T.-M. Sun, Y.-C. Chen, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition,” Sci. Rep. 5, 8965 (2015).
[Crossref] [PubMed]

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
[Crossref] [PubMed]

Wang, Q.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Wu, X.

X. Wu, Q. Chen, Y. Sun, and X. Fan, “Bio-inspired optofluidic lasers with luciferin,” Appl. Phys. Lett. 102(20), 203706 (2013).
[Crossref]

X. Wu and H. Cao, “Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems,” Phys. Rev. A 77(1), 013832 (2008).
[Crossref]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, H. Y.

H. K. Liang, S. F. Yu, and H. Y. Yang, “Directional and controllable edge-emitting ZnO ultraviolet random laser diodes,” Appl. Phys. Lett. 96(10), 101116 (2010).
[Crossref]

Yang, L.

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yao, K.

Yi, J.

You, Y.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Yu, S. F.

H. K. Liang, S. F. Yu, and H. Y. Yang, “Directional and controllable edge-emitting ZnO ultraviolet random laser diodes,” Appl. Phys. Lett. 96(10), 101116 (2010).
[Crossref]

Zacheo, A.

I. Viola, N. Ghofraniha, A. Zacheo, V. Arima, C. Conti, and G. Gigli, “Random laser emission from a paper-based device,” J. Mater. Chem. C 1(48), 8128–8133 (2013).
[Crossref]

Zhang, D.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: the pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Zhao, Y.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Zhou, S.

ACS Nano (1)

A. Camposeo, P. Del Carro, L. Persano, K. Cyprych, A. Szukalski, L. Sznitko, J. Mysliwiec, and D. Pisignano, “Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA,” ACS Nano 8(10), 10893–10898 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

H. K. Liang, S. F. Yu, and H. Y. Yang, “Directional and controllable edge-emitting ZnO ultraviolet random laser diodes,” Appl. Phys. Lett. 96(10), 101116 (2010).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

X. Wu, Q. Chen, Y. Sun, and X. Fan, “Bio-inspired optofluidic lasers with luciferin,” Appl. Phys. Lett. 102(20), 203706 (2013).
[Crossref]

Energ. Environ. Sci. (1)

C. Jeffryes, J. Campbell, H. Li, J. Jiao, and G. Rorrer, “The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices,” Energ. Environ. Sci. 4(10), 3930–3941 (2011).
[Crossref]

J. Appl. Phys. (3)

M. V. dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. de Melo, S. J. L. Ribeiro, A. S. L. Gomes, and C. B. de Araújo, “Random laser action from flexible biocellulose-based device,” J. Appl. Phys. 115(8), 083108 (2014).
[Crossref]

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

O. Lagerstedt and B. Monemar, “Luminescence in epitaxial GaN: Cd,” J. Appl. Phys. 45(5), 2266–2272 (1974).
[Crossref]

J. Mater. Chem. C (2)

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araujo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181–7190 (2013).
[Crossref]

I. Viola, N. Ghofraniha, A. Zacheo, V. Arima, C. Conti, and G. Gigli, “Random laser emission from a paper-based device,” J. Mater. Chem. C 1(48), 8128–8133 (2013).
[Crossref]

J. Opt. (1)

R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12(2), 024010 (2010).
[Crossref]

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Mater. Sci. Semicond. Process. (1)

M. Balucani, V. Bondarenko, L. Dolgyi, G. Lamedica, A. Ricciardelli, E. Viarengo, N. Vorozov, and A. Ferrari, “Bending properties in oxidized porous silicon waveguides,” Mater. Sci. Semicond. Process. 3(5-6), 351–355 (2000).
[Crossref]

Nat. Nanotechnol. (1)

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Opt. Commun. (1)

O. Svelto, S. Taccheo, and C. Svelto, “Analysis of amplified spontaneous emission: some corrections to the Linford formula,” Opt. Commun. 149(4-6), 277–282 (1998).
[Crossref]

Opt. Express (3)

Org. Electron. (1)

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: the pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Phys. Rev. A (1)

X. Wu and H. Cao, “Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems,” Phys. Rev. A 77(1), 013832 (2008).
[Crossref]

Phys. Rev. Lett. (1)

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1304–1309 (2015).
[Crossref] [PubMed]

RSC Adv. (1)

F. R. Lamastra, R. De Angelis, A. Antonucci, D. Salvatori, P. Prosposito, M. Casalboni, R. Congestri, S. Melino, and F. Nanni, “Polymer composite random lasers based on diatom frustules as scatterers,” RSC Adv. 4(106), 61809–61816 (2014).
[Crossref]

Sci. Rep. (2)

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors,” Sci. Rep. 4, 6736 (2014).
[Crossref] [PubMed]

C.-S. Wang, C.-S. Liau, T.-M. Sun, Y.-C. Chen, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition,” Sci. Rep. 5, 8965 (2015).
[Crossref] [PubMed]

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Solid State Commun. (1)

R. Dingle and M. Ilegems, “Donor-acceptor pair recombination in GaN,” Solid State Commun. 9(3), 175–180 (1971).
[Crossref]

Sov. Phys. Solid State (1)

E. I. Rashba and G. E. Gergenishvili, “Edge absorption theory in semiconductors,” Sov. Phys. Solid State 4, 759–760 (1962).

Other (5)

D. G. Rabus, Integrated Ring Resonators: The Compendium (Springer Berlin Heidelberg, 2007).

S. J. Pearton, GaN and Related Materials (Taylor & Francis, 1997).

A. E. Siegman, Lasers (University Science Books, 1986).

O. Shimomura, Bioluminescence: Chemical Principles and Methods (World Scientific, 2012).

G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice (Academic, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Low magnification scanning electron microscope (SEM) image of diatomite; (b) high magnification SEM image of diatomite; (c) x-ray diffraction pattern of GaN thin film on sapphire substrate; (d) emission spectra of GaN thin film under different excitation energy. ASE represents amplified spontaneous emission.
Fig. 2
Fig. 2 Amplified spontaneous emission spectra of GaN/sapphire substrate under different excitation energy. Inset: emission peak intensity versus pumping energy. Blue spheres denote the experiment data. Dash line represents the exponential fit of the experiment data.
Fig. 3
Fig. 3 Random laser spectra with various excitation energies derived from GaN/diatom composite. Inset: large-scale emission spectra comparison between the pure GaN sample and GaN/diatom composite. Red line denotes the emission spectrum of pure GaN sample. Blue line represents the emission spectrum of diatom/GaN composite. Both spectra are measured under the same excitation energy of 176 μJ.
Fig. 4
Fig. 4 Emission peak intensity and full width at half maximum (FWHM) versus excitation energy of GaN/diatom sample. Red spheres and Blue stars represent the experiment data of peak intensity and FWHM, respectively. Dash line is the exponential fit for the amplified spontaneous emission.
Fig. 5
Fig. 5 Absorption spectrum of 10−4 M Rh6G-ethanol solution. Inset: Bottle of 10−4 M Rh6G-ethanol solution.
Fig. 6
Fig. 6 Lasing spectra of Rh6G/diatom sample under different pumping energy. The left inset shows the emission peak intensity versus pumping energy. The right inset is the multi-mode random lasing spectrum of Rh6G/diatom sample, with pumping energy of 120 μJ.

Metrics