Abstract

A two-stage fast and adaptive chromatic dispersion (CD) estimation algorithm is proposed and demonstrated for coherent polarization-division-multiplexed (PDM) systems. The first stage uses signal power auto-correlation function for the coarse estimation while the second stage utilizes a modified constant modulus algorithm (MCMA) to obtain much more accurate accumulated CD. Simulation results show that the proposed algorithm is sufficient for CD estimation in non-dispersion-managed optical transmission of 112-Gb/s PDM-QPSK or 224-Gb/s PDM-16QAM signals. The concept is further experimentally verified in a 40-Gb/s PDM-QPSK system. Only ~7% estimation time is required to achieve similar accuracy compared to previous MCMA algorithm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast and robust chromatic dispersion estimation based on temporal auto-correlation after digital spectrum superposition

Shuchang Yao, Tobias A. Eriksson, Songnian Fu, Pontus Johannisson, Magnus Karlsson, Peter A. Andrekson, Tang Ming, and Deming Liu
Opt. Express 23(12) 15418-15430 (2015)

Joint equalization scheme of ultra-fast RSOP and large PMD compensation in presence of residual chromatic dispersion

Wei Yi, Zibo Zheng, Nan Cui, Xiaoguang Zhang, Liyuan Qiu, Nannan Zhang, Lixia Xi, Wenbo Zhang, and Xianfeng Tang
Opt. Express 27(15) 21896-21913 (2019)

OSNR monitoring for QPSK and 16-QAM systems in presence of fiber nonlinearities for digital coherent receivers

Zhenhua Dong, Alan Pak Tao Lau, and Chao Lu
Opt. Express 20(17) 19520-19534 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J. 3(2), 325–330 (2011).
    [Crossref]
  2. P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
    [Crossref]
  3. Z. Chen, L. Yan, W. Pan, B. Luo, Y. Guo, H. Jiang, A. Yi, Y. Sun, and X. Wu, “Transmission of multi-polarization-multiplexed signals: another freedom to explore?” Opt. Express 21(9), 11590–11605 (2013).
    [Crossref] [PubMed]
  4. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
    [Crossref]
  5. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, M. S. Alfiad, A. Napoli, and B. Lankl, “DSP for coherent single-carrier receivers,” J. Lightwave Technol. 27(16), 3614–3622 (2009).
    [Crossref]
  6. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  7. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [Crossref]
  8. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” Proc. European Conference on Optical Communication 2008 (ECOC 2008), paper We.2.E.3.
    [Crossref]
  9. A. V. Tran, C. Zhu, C. Do, S. Chen, T. Anderson, D. Hewitt, and E. Skafidas, “8x40-Gb/s optical coherent Pol-Mux single carrier system with frequency domain equalization and training sequences,” IEEE Photon. Technol. Lett. 24(11), 885–887 (2012).
    [Crossref]
  10. R. Borkowski, X. Zhang, D. Zibar, R. Younce, and I. T. Monroy, “Experimental demonstration of adaptive digital monitoring and compensation of chromatic dispersion for coherent DP-QPSK receiver,” Opt. Express 19(26), B728–B735 (2011).
    [Crossref] [PubMed]
  11. D. Wang, C. Lu, A. P. T. Lau, and S. He, “Adaptive chromatic dispersion compensation for coherent communication systems using delay-tap sampling technique,” IEEE Photon. Technol. Lett. 23(14), 1016–1018 (2011).
    [Crossref]
  12. Q. Sui, A. P. T. Lau, and C. Lu, “Fast and robust blind chromatic dispersion estimation using auto-correlation of signal power waveform for digital coherent systems,” J. Lightwave Technol. 31(2), 306–312 (2013).
    [Crossref]
  13. F. C. Pereira, V. N. Rozental, M. Camera, G. Bruno, and D. A. A. Mello, “Experimental analysis of the power auto-correlation-based chromatic dispersion estimation method,” IEEE Photon. J. 5(4), 7901608 (2013).
    [Crossref]
  14. C. Xie, “Chromatic Dispersion Estimation for Single-Carrier Coherent Optical Communications,” IEEE Photon. Technol. Lett. 25(10), 992–995 (2013).
    [Crossref]
  15. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, A. Napoli, and B. Lankl, “Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems,” Proc. Optical Fiber Communication Conference2009(OFC'2009), paper OMT1.
    [Crossref]
  16. J. Proakis Digital Signal Processing: Principles, Algorithms, and Applications (Prentice Hall, 1996).

2013 (4)

Z. Chen, L. Yan, W. Pan, B. Luo, Y. Guo, H. Jiang, A. Yi, Y. Sun, and X. Wu, “Transmission of multi-polarization-multiplexed signals: another freedom to explore?” Opt. Express 21(9), 11590–11605 (2013).
[Crossref] [PubMed]

Q. Sui, A. P. T. Lau, and C. Lu, “Fast and robust blind chromatic dispersion estimation using auto-correlation of signal power waveform for digital coherent systems,” J. Lightwave Technol. 31(2), 306–312 (2013).
[Crossref]

F. C. Pereira, V. N. Rozental, M. Camera, G. Bruno, and D. A. A. Mello, “Experimental analysis of the power auto-correlation-based chromatic dispersion estimation method,” IEEE Photon. J. 5(4), 7901608 (2013).
[Crossref]

C. Xie, “Chromatic Dispersion Estimation for Single-Carrier Coherent Optical Communications,” IEEE Photon. Technol. Lett. 25(10), 992–995 (2013).
[Crossref]

2012 (1)

A. V. Tran, C. Zhu, C. Do, S. Chen, T. Anderson, D. Hewitt, and E. Skafidas, “8x40-Gb/s optical coherent Pol-Mux single carrier system with frequency domain equalization and training sequences,” IEEE Photon. Technol. Lett. 24(11), 885–887 (2012).
[Crossref]

2011 (3)

R. Borkowski, X. Zhang, D. Zibar, R. Younce, and I. T. Monroy, “Experimental demonstration of adaptive digital monitoring and compensation of chromatic dispersion for coherent DP-QPSK receiver,” Opt. Express 19(26), B728–B735 (2011).
[Crossref] [PubMed]

D. Wang, C. Lu, A. P. T. Lau, and S. He, “Adaptive chromatic dispersion compensation for coherent communication systems using delay-tap sampling technique,” IEEE Photon. Technol. Lett. 23(14), 1016–1018 (2011).
[Crossref]

L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J. 3(2), 325–330 (2011).
[Crossref]

2010 (2)

P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[Crossref]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

2009 (1)

2008 (1)

2004 (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[Crossref]

Alfiad, M. S.

Anderson, T.

A. V. Tran, C. Zhu, C. Do, S. Chen, T. Anderson, D. Hewitt, and E. Skafidas, “8x40-Gb/s optical coherent Pol-Mux single carrier system with frequency domain equalization and training sequences,” IEEE Photon. Technol. Lett. 24(11), 885–887 (2012).
[Crossref]

Borkowski, R.

Bruno, G.

F. C. Pereira, V. N. Rozental, M. Camera, G. Bruno, and D. A. A. Mello, “Experimental analysis of the power auto-correlation-based chromatic dispersion estimation method,” IEEE Photon. J. 5(4), 7901608 (2013).
[Crossref]

Camera, M.

F. C. Pereira, V. N. Rozental, M. Camera, G. Bruno, and D. A. A. Mello, “Experimental analysis of the power auto-correlation-based chromatic dispersion estimation method,” IEEE Photon. J. 5(4), 7901608 (2013).
[Crossref]

Chen, S.

A. V. Tran, C. Zhu, C. Do, S. Chen, T. Anderson, D. Hewitt, and E. Skafidas, “8x40-Gb/s optical coherent Pol-Mux single carrier system with frequency domain equalization and training sequences,” IEEE Photon. Technol. Lett. 24(11), 885–887 (2012).
[Crossref]

Chen, Z.

Do, C.

A. V. Tran, C. Zhu, C. Do, S. Chen, T. Anderson, D. Hewitt, and E. Skafidas, “8x40-Gb/s optical coherent Pol-Mux single carrier system with frequency domain equalization and training sequences,” IEEE Photon. Technol. Lett. 24(11), 885–887 (2012).
[Crossref]

Guo, Y.

Hauske, F. N.

He, S.

D. Wang, C. Lu, A. P. T. Lau, and S. He, “Adaptive chromatic dispersion compensation for coherent communication systems using delay-tap sampling technique,” IEEE Photon. Technol. Lett. 23(14), 1016–1018 (2011).
[Crossref]

Hewitt, D.

A. V. Tran, C. Zhu, C. Do, S. Chen, T. Anderson, D. Hewitt, and E. Skafidas, “8x40-Gb/s optical coherent Pol-Mux single carrier system with frequency domain equalization and training sequences,” IEEE Photon. Technol. Lett. 24(11), 885–887 (2012).
[Crossref]

Jiang, H.

Kuschnerov, M.

Lankl, B.

Lau, A. P. T.

Q. Sui, A. P. T. Lau, and C. Lu, “Fast and robust blind chromatic dispersion estimation using auto-correlation of signal power waveform for digital coherent systems,” J. Lightwave Technol. 31(2), 306–312 (2013).
[Crossref]

D. Wang, C. Lu, A. P. T. Lau, and S. He, “Adaptive chromatic dispersion compensation for coherent communication systems using delay-tap sampling technique,” IEEE Photon. Technol. Lett. 23(14), 1016–1018 (2011).
[Crossref]

Liu, X.

L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J. 3(2), 325–330 (2011).
[Crossref]

Lu, C.

Q. Sui, A. P. T. Lau, and C. Lu, “Fast and robust blind chromatic dispersion estimation using auto-correlation of signal power waveform for digital coherent systems,” J. Lightwave Technol. 31(2), 306–312 (2013).
[Crossref]

D. Wang, C. Lu, A. P. T. Lau, and S. He, “Adaptive chromatic dispersion compensation for coherent communication systems using delay-tap sampling technique,” IEEE Photon. Technol. Lett. 23(14), 1016–1018 (2011).
[Crossref]

Luo, B.

Mello, D. A. A.

F. C. Pereira, V. N. Rozental, M. Camera, G. Bruno, and D. A. A. Mello, “Experimental analysis of the power auto-correlation-based chromatic dispersion estimation method,” IEEE Photon. J. 5(4), 7901608 (2013).
[Crossref]

Monroy, I. T.

Napoli, A.

Pan, W.

Pereira, F. C.

F. C. Pereira, V. N. Rozental, M. Camera, G. Bruno, and D. A. A. Mello, “Experimental analysis of the power auto-correlation-based chromatic dispersion estimation method,” IEEE Photon. J. 5(4), 7901608 (2013).
[Crossref]

Piyawanno, K.

Rozental, V. N.

F. C. Pereira, V. N. Rozental, M. Camera, G. Bruno, and D. A. A. Mello, “Experimental analysis of the power auto-correlation-based chromatic dispersion estimation method,” IEEE Photon. J. 5(4), 7901608 (2013).
[Crossref]

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[Crossref] [PubMed]

Shieh, W.

L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J. 3(2), 325–330 (2011).
[Crossref]

Skafidas, E.

A. V. Tran, C. Zhu, C. Do, S. Chen, T. Anderson, D. Hewitt, and E. Skafidas, “8x40-Gb/s optical coherent Pol-Mux single carrier system with frequency domain equalization and training sequences,” IEEE Photon. Technol. Lett. 24(11), 885–887 (2012).
[Crossref]

Spinnler, B.

Sui, Q.

Sun, Y.

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[Crossref]

Tran, A. V.

A. V. Tran, C. Zhu, C. Do, S. Chen, T. Anderson, D. Hewitt, and E. Skafidas, “8x40-Gb/s optical coherent Pol-Mux single carrier system with frequency domain equalization and training sequences,” IEEE Photon. Technol. Lett. 24(11), 885–887 (2012).
[Crossref]

Wang, D.

D. Wang, C. Lu, A. P. T. Lau, and S. He, “Adaptive chromatic dispersion compensation for coherent communication systems using delay-tap sampling technique,” IEEE Photon. Technol. Lett. 23(14), 1016–1018 (2011).
[Crossref]

Winzer, P. J.

P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[Crossref]

Wu, X.

Xie, C.

C. Xie, “Chromatic Dispersion Estimation for Single-Carrier Coherent Optical Communications,” IEEE Photon. Technol. Lett. 25(10), 992–995 (2013).
[Crossref]

Yan, L.

Yan, L. S.

L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J. 3(2), 325–330 (2011).
[Crossref]

Yi, A.

Younce, R.

Zhang, X.

Zhu, C.

A. V. Tran, C. Zhu, C. Do, S. Chen, T. Anderson, D. Hewitt, and E. Skafidas, “8x40-Gb/s optical coherent Pol-Mux single carrier system with frequency domain equalization and training sequences,” IEEE Photon. Technol. Lett. 24(11), 885–887 (2012).
[Crossref]

Zibar, D.

IEEE Commun. Mag. (1)

P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

IEEE Photon. J. (2)

F. C. Pereira, V. N. Rozental, M. Camera, G. Bruno, and D. A. A. Mello, “Experimental analysis of the power auto-correlation-based chromatic dispersion estimation method,” IEEE Photon. J. 5(4), 7901608 (2013).
[Crossref]

L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J. 3(2), 325–330 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (4)

D. Wang, C. Lu, A. P. T. Lau, and S. He, “Adaptive chromatic dispersion compensation for coherent communication systems using delay-tap sampling technique,” IEEE Photon. Technol. Lett. 23(14), 1016–1018 (2011).
[Crossref]

C. Xie, “Chromatic Dispersion Estimation for Single-Carrier Coherent Optical Communications,” IEEE Photon. Technol. Lett. 25(10), 992–995 (2013).
[Crossref]

A. V. Tran, C. Zhu, C. Do, S. Chen, T. Anderson, D. Hewitt, and E. Skafidas, “8x40-Gb/s optical coherent Pol-Mux single carrier system with frequency domain equalization and training sequences,” IEEE Photon. Technol. Lett. 24(11), 885–887 (2012).
[Crossref]

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (3)

Other (3)

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” Proc. European Conference on Optical Communication 2008 (ECOC 2008), paper We.2.E.3.
[Crossref]

M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, A. Napoli, and B. Lankl, “Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems,” Proc. Optical Fiber Communication Conference2009(OFC'2009), paper OMT1.
[Crossref]

J. Proakis Digital Signal Processing: Principles, Algorithms, and Applications (Prentice Hall, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Flow schematic of the proposed FCMA algorithm.
Fig. 2
Fig. 2 Simulated results of different transmission rates for previous ACSPW algorithm and new FCMA algorithm: fiber length versus dispersion value in (a) 10-Gbaud; (b) 28-Gbaud; Here OSNR = 14dB, DGD = 15ps, PDL = 15dB, Launching power = 0dBm;
Fig. 3
Fig. 3 Simulated results with 10 × 100-km SMF for 112-Gb/s PDM-QPSK and 224-Gb/s PDM-16QAM: (a) mean error versus different PDL values with 14dB-OSNR, 10ps and 15ps-DGD; (b) mean error versus different DGD values with different OSNR (i.e. 14dB, 20dB);
Fig. 4
Fig. 4 Experimental setup of the 40-Gb/s PDM-QPSK system. ECL: External Cavity Laser; VOA: Variable Optical Attenuator; Delay: Variable Optical Delay Line; PBS: Polarization Beam Splitter; PBC: Polarization Beam Combiner; PC: Polarization Controller; EDFA: Erbium Doped Fiber Amplifier; LO: Local Oscillator; Tx: Transmitter; Rx: Receiver.
Fig. 5
Fig. 5 Experimental results: (a) The auto-correlation curves with different fiber lengths (i.e. 600-km, 660-km, 715-km); (b) CD monitoring results using ACSPW and FCMA algorithms with different fiber lengths.
Fig. 6
Fig. 6 Experimental results: (a) BER performance after CD compensation over 80-km SMF for back-to-back, using ACSPW and FCMA algorithms; (b) BER versus the step number employing MCMA and FCMA algorithms over 720-km SMF.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P [ n ]=IFFT{|FFT( | E i n [ n ] | 2 )| 2 },
P [ n ]=IFFT{|FFT( | E i n [ n ] E i n [ n + 1 ] | 2 )| 2 } .
τ 0 = 2 π ( T 0 4 + β 2 2 z 2 ) T β 2 z ,
τ 0 2 π β 2 z T .
D a c = τ 0 T c λ 2 ,
ε = n = 1 N ( | | E [ 2 n - 1 ] | 2 - R 1 | + | | E [ 2 n ] | 2 - R 2 | ) ,
R 1 , 2 = | E [ n ] | 4 | E [ n ] | 2 .
H C D = exp ( j D l c λ 2 2 π c ω 2 2 ) ,
E f i n c = IFFT { FFT { E i n [ n ] } H C D }

Metrics