Abstract

A photonic system exemplifying the neurobiological learning algorithm, spike timing dependent plasticity (STDP), is experimentally demonstrated using the cooperative effects of cross gain modulation and nonlinear polarization rotation within an SOA. Furthermore, an STDP-based photonic approach towards the measurement of the angle of arrival (AOA) of a microwave signal is developed, and a three-dimensional AOA localization scheme is explored. Measurement accuracies on the order of tens of centimeters, rivaling that of complex positioning systems that utilize a large distribution of measuring units, are achieved for larger distances and with a simpler setup using just three STDP-based AOA units.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation

Quansheng Ren, Yaolin Zhang, Rui Wang, and Jianye Zhao
Opt. Express 23(19) 25247-25258 (2015)

Implementation of pulse timing discriminator functionality into a GeSbTe/GeCuTe double layer structure

Ryota Akimoto, Hiroaki Handa, Satoshi Shindo, Yuji Sutou, Masashi Kuwahara, Makoto Naruse, and Toshiharu Saiki
Opt. Express 25(22) 26825-26831 (2017)

Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-dependent plasticity

Mable P. Fok, Yue Tian, David Rosenbluth, and Paul R. Prucnal
Opt. Lett. 38(4) 419-421 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance photonic pulse processing device,” Opt. Express 17(25), 22767–22772 (2009).
    [Crossref] [PubMed]
  2. M. P. Fok, D. Rosenbluth, K. Kravtsov, and P. R. Prucnal, “Lightwave neuromorphic signal processing [in the spotlight],” IEEE Signal Process. Mag. 27(6), 160 (2010).
  3. K. S. Kravtsov, M. P. Fok, P. R. Prucnal, and D. Rosenbluth, “Ultrafast all-optical implementation of a leaky integrate-and-fire neuron,” Opt. Express 19(3), 2133–2147 (2011).
    [Crossref] [PubMed]
  4. M. P. Fok, H. Deming, M. Nahmias, N. Rafidi, D. Rosenbluth, A. Tait, Y. Tian, and P. R. Prucnal, “Signal feature recognition based on lightwave neuromorphic signal processing,” Opt. Lett. 36(1), 19–21 (2011).
    [Crossref] [PubMed]
  5. Y. Tian, M. P. Fok, D. Rosenbluth, and P. R. Prucnal, “Asynchronous spiking neuron based on four-wave mixing and cross absorption modulation,” in Optical Fiber Communication Conference, 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper OTh3H.1.
    [Crossref]
  6. M. P. Fok, Y. Tian, D. Rosenbluth, and P. R. Prucnal, “Asynchronous spiking photonic neuron for lightwave neuromorphic signal processing,” Opt. Lett. 37(16), 3309–3311 (2012).
    [Crossref] [PubMed]
  7. M. A. Nahmias, B. J. Shastri, A. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–12 (2013).
    [Crossref]
  8. M. P. Fok, Y. Tian, D. Rosenbluth, and P. R. Prucnal, “Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-dependent plasticity,” Opt. Lett. 38(4), 419–421 (2013).
    [Crossref] [PubMed]
  9. R. C. Froemke and Y. Dan, “Spike-timing-dependent synaptic modification induced by natural spike trains,” Nature 416(6879), 433–438 (2002).
    [Crossref] [PubMed]
  10. R. Toole and M. P. Fok, “Photonic implementation of a neuronal learning algorithm based on spike timing dependent plasticity,” in Optical Fiber Communication Conference, 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper W1K.6.
    [Crossref]
  11. H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37(6), 1067–1080 (2007).
  12. D. Niculescu and B. Nath, “Ad hoc positioning system (APS) using AOA,” in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications (IEEE, 2003), pp.1734–1743.
    [Crossref]
  13. I. Amundson, J. Sallai, X. Koutsoukos, A. Ledeczi, and M. Maroti, “RF angle of arrival-based node localization,” Int. J. Sens. Netw. 9(3), 209–224 (2011).
    [Crossref]
  14. W. Gerok, M. El-Hadidy, S. A. El Din, and T. Kaiser, “Influence of the real UWB antennas on the AOA estimation based on the TDOA localization technique,” in IEEE Middle East Conference on Antennas and Propagation (IEEE, 2010), pp. 1–6.
    [Crossref]
  15. M. C. O’Connor, “HP kicks off U.S. RFID demo center,” http://www.rfidjournal.com/article/articleview/1211/1/50/ .
  16. A. Teuber, B. Eissfeller, and T. Pany, “A two-stage fuzzy logic approach for wireless LAN indoor positioning,” in Proc. IEEE/ION Position Location Navigat. Symp4 (IEEE, 2006), pp. 730–738.
    [Crossref]
  17. M. Brunato and R. Battiti, “Statistical learning theory for location fingerprinting in wireless LANs,” Comput. Netw. 47(6), 825–845 (2005).
    [Crossref]
  18. M. W. Khan, N. Salman, and A. H. Kemp, “Cooperative positioning using angle of arrival and time of arrival,” in Sensor Signal Processing for Defence (IEEE, 2014), pp. 1–5.
  19. N. Vo, S. Lee, and S. Challa, “Weighted nonmetric MDS for sensor localization,” in International Conference on Advanced Technologies for Communications (IEEE, 2008), pp. 391–394.
  20. X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett. 37(4), 755–757 (2012).
    [Crossref] [PubMed]
  21. A. Galvanauskas, P. A. Krug, and D. Harter, “Nanosecond-to-picosecond pulse compression with fiber gratings in a compact fiber-based chirped-pulse-amplification system,” Opt. Lett. 21(14), 1049–1051 (1996).
    [Crossref] [PubMed]
  22. S. Thomas, A. Malacarne, F. Fresi, L. Potì, A. Bogoni, and J. Azaña, “Programmable fiber-based picosecond optical pulse shaper using time-domain binary phase-only linear filtering,” Opt. Lett. 34(4), 545–547 (2009).
    [Crossref] [PubMed]
  23. L. Fu, A. Fuerbach, I. C. M. Littler, and B. J. Eggleton, “Efficient optical pulse compression using chalcogenide single-mode fibers,” Appl. Phys. Lett. 88(8), 081116 (2006).
    [Crossref]
  24. A. Tait, B. J. Shastri, M. P. Fok, M. A. Nahmias, and P. R. Prucnal, “The DREAM: an integrated photonic thresholder,” J. Lightwave Technol. 31(8), 1263–1272 (2013).
    [Crossref]

2013 (3)

M. A. Nahmias, B. J. Shastri, A. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–12 (2013).
[Crossref]

A. Tait, B. J. Shastri, M. P. Fok, M. A. Nahmias, and P. R. Prucnal, “The DREAM: an integrated photonic thresholder,” J. Lightwave Technol. 31(8), 1263–1272 (2013).
[Crossref]

M. P. Fok, Y. Tian, D. Rosenbluth, and P. R. Prucnal, “Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-dependent plasticity,” Opt. Lett. 38(4), 419–421 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

2010 (1)

M. P. Fok, D. Rosenbluth, K. Kravtsov, and P. R. Prucnal, “Lightwave neuromorphic signal processing [in the spotlight],” IEEE Signal Process. Mag. 27(6), 160 (2010).

2009 (2)

2007 (1)

H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37(6), 1067–1080 (2007).

2006 (1)

L. Fu, A. Fuerbach, I. C. M. Littler, and B. J. Eggleton, “Efficient optical pulse compression using chalcogenide single-mode fibers,” Appl. Phys. Lett. 88(8), 081116 (2006).
[Crossref]

2005 (1)

M. Brunato and R. Battiti, “Statistical learning theory for location fingerprinting in wireless LANs,” Comput. Netw. 47(6), 825–845 (2005).
[Crossref]

2002 (1)

R. C. Froemke and Y. Dan, “Spike-timing-dependent synaptic modification induced by natural spike trains,” Nature 416(6879), 433–438 (2002).
[Crossref] [PubMed]

1996 (1)

Amundson, I.

I. Amundson, J. Sallai, X. Koutsoukos, A. Ledeczi, and M. Maroti, “RF angle of arrival-based node localization,” Int. J. Sens. Netw. 9(3), 209–224 (2011).
[Crossref]

Azaña, J.

Banerjee, P.

H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37(6), 1067–1080 (2007).

Battiti, R.

M. Brunato and R. Battiti, “Statistical learning theory for location fingerprinting in wireless LANs,” Comput. Netw. 47(6), 825–845 (2005).
[Crossref]

Bogoni, A.

Brunato, M.

M. Brunato and R. Battiti, “Statistical learning theory for location fingerprinting in wireless LANs,” Comput. Netw. 47(6), 825–845 (2005).
[Crossref]

Challa, S.

N. Vo, S. Lee, and S. Challa, “Weighted nonmetric MDS for sensor localization,” in International Conference on Advanced Technologies for Communications (IEEE, 2008), pp. 391–394.

Dan, Y.

R. C. Froemke and Y. Dan, “Spike-timing-dependent synaptic modification induced by natural spike trains,” Nature 416(6879), 433–438 (2002).
[Crossref] [PubMed]

Darabi, H.

H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37(6), 1067–1080 (2007).

Deming, H.

Eggleton, B. J.

L. Fu, A. Fuerbach, I. C. M. Littler, and B. J. Eggleton, “Efficient optical pulse compression using chalcogenide single-mode fibers,” Appl. Phys. Lett. 88(8), 081116 (2006).
[Crossref]

Eissfeller, B.

A. Teuber, B. Eissfeller, and T. Pany, “A two-stage fuzzy logic approach for wireless LAN indoor positioning,” in Proc. IEEE/ION Position Location Navigat. Symp4 (IEEE, 2006), pp. 730–738.
[Crossref]

El Din, S. A.

W. Gerok, M. El-Hadidy, S. A. El Din, and T. Kaiser, “Influence of the real UWB antennas on the AOA estimation based on the TDOA localization technique,” in IEEE Middle East Conference on Antennas and Propagation (IEEE, 2010), pp. 1–6.
[Crossref]

El-Hadidy, M.

W. Gerok, M. El-Hadidy, S. A. El Din, and T. Kaiser, “Influence of the real UWB antennas on the AOA estimation based on the TDOA localization technique,” in IEEE Middle East Conference on Antennas and Propagation (IEEE, 2010), pp. 1–6.
[Crossref]

Fok, M. P.

Fresi, F.

Froemke, R. C.

R. C. Froemke and Y. Dan, “Spike-timing-dependent synaptic modification induced by natural spike trains,” Nature 416(6879), 433–438 (2002).
[Crossref] [PubMed]

Fu, L.

L. Fu, A. Fuerbach, I. C. M. Littler, and B. J. Eggleton, “Efficient optical pulse compression using chalcogenide single-mode fibers,” Appl. Phys. Lett. 88(8), 081116 (2006).
[Crossref]

Fuerbach, A.

L. Fu, A. Fuerbach, I. C. M. Littler, and B. J. Eggleton, “Efficient optical pulse compression using chalcogenide single-mode fibers,” Appl. Phys. Lett. 88(8), 081116 (2006).
[Crossref]

Galvanauskas, A.

Gerok, W.

W. Gerok, M. El-Hadidy, S. A. El Din, and T. Kaiser, “Influence of the real UWB antennas on the AOA estimation based on the TDOA localization technique,” in IEEE Middle East Conference on Antennas and Propagation (IEEE, 2010), pp. 1–6.
[Crossref]

Harter, D.

Kaiser, T.

W. Gerok, M. El-Hadidy, S. A. El Din, and T. Kaiser, “Influence of the real UWB antennas on the AOA estimation based on the TDOA localization technique,” in IEEE Middle East Conference on Antennas and Propagation (IEEE, 2010), pp. 1–6.
[Crossref]

Koutsoukos, X.

I. Amundson, J. Sallai, X. Koutsoukos, A. Ledeczi, and M. Maroti, “RF angle of arrival-based node localization,” Int. J. Sens. Netw. 9(3), 209–224 (2011).
[Crossref]

Kravtsov, K.

M. P. Fok, D. Rosenbluth, K. Kravtsov, and P. R. Prucnal, “Lightwave neuromorphic signal processing [in the spotlight],” IEEE Signal Process. Mag. 27(6), 160 (2010).

D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance photonic pulse processing device,” Opt. Express 17(25), 22767–22772 (2009).
[Crossref] [PubMed]

Kravtsov, K. S.

Krug, P. A.

Ledeczi, A.

I. Amundson, J. Sallai, X. Koutsoukos, A. Ledeczi, and M. Maroti, “RF angle of arrival-based node localization,” Int. J. Sens. Netw. 9(3), 209–224 (2011).
[Crossref]

Lee, S.

N. Vo, S. Lee, and S. Challa, “Weighted nonmetric MDS for sensor localization,” in International Conference on Advanced Technologies for Communications (IEEE, 2008), pp. 391–394.

Li, W.

Littler, I. C. M.

L. Fu, A. Fuerbach, I. C. M. Littler, and B. J. Eggleton, “Efficient optical pulse compression using chalcogenide single-mode fibers,” Appl. Phys. Lett. 88(8), 081116 (2006).
[Crossref]

Liu, H.

H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37(6), 1067–1080 (2007).

Liu, J.

H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37(6), 1067–1080 (2007).

Luo, B.

Malacarne, A.

Maroti, M.

I. Amundson, J. Sallai, X. Koutsoukos, A. Ledeczi, and M. Maroti, “RF angle of arrival-based node localization,” Int. J. Sens. Netw. 9(3), 209–224 (2011).
[Crossref]

Nahmias, M.

Nahmias, M. A.

A. Tait, B. J. Shastri, M. P. Fok, M. A. Nahmias, and P. R. Prucnal, “The DREAM: an integrated photonic thresholder,” J. Lightwave Technol. 31(8), 1263–1272 (2013).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–12 (2013).
[Crossref]

Pan, W.

Pany, T.

A. Teuber, B. Eissfeller, and T. Pany, “A two-stage fuzzy logic approach for wireless LAN indoor positioning,” in Proc. IEEE/ION Position Location Navigat. Symp4 (IEEE, 2006), pp. 730–738.
[Crossref]

Potì, L.

Prucnal, P. R.

A. Tait, B. J. Shastri, M. P. Fok, M. A. Nahmias, and P. R. Prucnal, “The DREAM: an integrated photonic thresholder,” J. Lightwave Technol. 31(8), 1263–1272 (2013).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–12 (2013).
[Crossref]

M. P. Fok, Y. Tian, D. Rosenbluth, and P. R. Prucnal, “Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-dependent plasticity,” Opt. Lett. 38(4), 419–421 (2013).
[Crossref] [PubMed]

M. P. Fok, Y. Tian, D. Rosenbluth, and P. R. Prucnal, “Asynchronous spiking photonic neuron for lightwave neuromorphic signal processing,” Opt. Lett. 37(16), 3309–3311 (2012).
[Crossref] [PubMed]

K. S. Kravtsov, M. P. Fok, P. R. Prucnal, and D. Rosenbluth, “Ultrafast all-optical implementation of a leaky integrate-and-fire neuron,” Opt. Express 19(3), 2133–2147 (2011).
[Crossref] [PubMed]

M. P. Fok, H. Deming, M. Nahmias, N. Rafidi, D. Rosenbluth, A. Tait, Y. Tian, and P. R. Prucnal, “Signal feature recognition based on lightwave neuromorphic signal processing,” Opt. Lett. 36(1), 19–21 (2011).
[Crossref] [PubMed]

M. P. Fok, D. Rosenbluth, K. Kravtsov, and P. R. Prucnal, “Lightwave neuromorphic signal processing [in the spotlight],” IEEE Signal Process. Mag. 27(6), 160 (2010).

D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance photonic pulse processing device,” Opt. Express 17(25), 22767–22772 (2009).
[Crossref] [PubMed]

Rafidi, N.

Rosenbluth, D.

Sallai, J.

I. Amundson, J. Sallai, X. Koutsoukos, A. Ledeczi, and M. Maroti, “RF angle of arrival-based node localization,” Int. J. Sens. Netw. 9(3), 209–224 (2011).
[Crossref]

Shastri, B. J.

M. A. Nahmias, B. J. Shastri, A. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–12 (2013).
[Crossref]

A. Tait, B. J. Shastri, M. P. Fok, M. A. Nahmias, and P. R. Prucnal, “The DREAM: an integrated photonic thresholder,” J. Lightwave Technol. 31(8), 1263–1272 (2013).
[Crossref]

Tait, A.

M. A. Nahmias, B. J. Shastri, A. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–12 (2013).
[Crossref]

A. Tait, B. J. Shastri, M. P. Fok, M. A. Nahmias, and P. R. Prucnal, “The DREAM: an integrated photonic thresholder,” J. Lightwave Technol. 31(8), 1263–1272 (2013).
[Crossref]

M. P. Fok, H. Deming, M. Nahmias, N. Rafidi, D. Rosenbluth, A. Tait, Y. Tian, and P. R. Prucnal, “Signal feature recognition based on lightwave neuromorphic signal processing,” Opt. Lett. 36(1), 19–21 (2011).
[Crossref] [PubMed]

Teuber, A.

A. Teuber, B. Eissfeller, and T. Pany, “A two-stage fuzzy logic approach for wireless LAN indoor positioning,” in Proc. IEEE/ION Position Location Navigat. Symp4 (IEEE, 2006), pp. 730–738.
[Crossref]

Thomas, S.

Tian, Y.

Vo, N.

N. Vo, S. Lee, and S. Challa, “Weighted nonmetric MDS for sensor localization,” in International Conference on Advanced Technologies for Communications (IEEE, 2008), pp. 391–394.

Yan, L.

Yao, J.

Zou, X.

Appl. Phys. Lett. (1)

L. Fu, A. Fuerbach, I. C. M. Littler, and B. J. Eggleton, “Efficient optical pulse compression using chalcogenide single-mode fibers,” Appl. Phys. Lett. 88(8), 081116 (2006).
[Crossref]

Comput. Netw. (1)

M. Brunato and R. Battiti, “Statistical learning theory for location fingerprinting in wireless LANs,” Comput. Netw. 47(6), 825–845 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. A. Nahmias, B. J. Shastri, A. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–12 (2013).
[Crossref]

IEEE Signal Process. Mag. (1)

M. P. Fok, D. Rosenbluth, K. Kravtsov, and P. R. Prucnal, “Lightwave neuromorphic signal processing [in the spotlight],” IEEE Signal Process. Mag. 27(6), 160 (2010).

IEEE Trans. Syst., Man, Cybern. C (1)

H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37(6), 1067–1080 (2007).

Int. J. Sens. Netw. (1)

I. Amundson, J. Sallai, X. Koutsoukos, A. Ledeczi, and M. Maroti, “RF angle of arrival-based node localization,” Int. J. Sens. Netw. 9(3), 209–224 (2011).
[Crossref]

J. Lightwave Technol. (1)

A. Tait, B. J. Shastri, M. P. Fok, M. A. Nahmias, and P. R. Prucnal, “The DREAM: an integrated photonic thresholder,” J. Lightwave Technol. 31(8), 1263–1272 (2013).
[Crossref]

Nature (1)

R. C. Froemke and Y. Dan, “Spike-timing-dependent synaptic modification induced by natural spike trains,” Nature 416(6879), 433–438 (2002).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (6)

Other (8)

D. Niculescu and B. Nath, “Ad hoc positioning system (APS) using AOA,” in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications (IEEE, 2003), pp.1734–1743.
[Crossref]

M. W. Khan, N. Salman, and A. H. Kemp, “Cooperative positioning using angle of arrival and time of arrival,” in Sensor Signal Processing for Defence (IEEE, 2014), pp. 1–5.

N. Vo, S. Lee, and S. Challa, “Weighted nonmetric MDS for sensor localization,” in International Conference on Advanced Technologies for Communications (IEEE, 2008), pp. 391–394.

R. Toole and M. P. Fok, “Photonic implementation of a neuronal learning algorithm based on spike timing dependent plasticity,” in Optical Fiber Communication Conference, 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper W1K.6.
[Crossref]

Y. Tian, M. P. Fok, D. Rosenbluth, and P. R. Prucnal, “Asynchronous spiking neuron based on four-wave mixing and cross absorption modulation,” in Optical Fiber Communication Conference, 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper OTh3H.1.
[Crossref]

W. Gerok, M. El-Hadidy, S. A. El Din, and T. Kaiser, “Influence of the real UWB antennas on the AOA estimation based on the TDOA localization technique,” in IEEE Middle East Conference on Antennas and Propagation (IEEE, 2010), pp. 1–6.
[Crossref]

M. C. O’Connor, “HP kicks off U.S. RFID demo center,” http://www.rfidjournal.com/article/articleview/1211/1/50/ .

A. Teuber, B. Eissfeller, and T. Pany, “A two-stage fuzzy logic approach for wireless LAN indoor positioning,” in Proc. IEEE/ION Position Location Navigat. Symp4 (IEEE, 2006), pp. 730–738.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Theoretical STDP curve; (b) STDP experimental setup - Oval with arrow: polarizer; PC1 and PC2: polarization controllers; SOA: semiconductor optical amplifier; Square with diagonal: polarization beam splitter; Colored squares: bandpass filters at λpre and λpost.
Fig. 2
Fig. 2 (a) Photonic STDP channel 1 output; (b) Channel 2 output; (c) Channels 1 and 2 combined.
Fig. 3
Fig. 3 (a) Oscilloscope traces of preliminary NPR and XGM results. (b) Experimental STDP results given different SOA driving currents.
Fig. 4
Fig. 4 (a) STDP AOA array, with AOA response depicted in the inset; (b) Basic 3D AOA localization schematic with three nodes uncovering three directions, θa, θb, θc.
Fig. 5
Fig. 5 Comparison of expected (red) and observed (blue) STDP outputs for nodes at xa = 0.5, 5, 8, 12, 15, and 20 m.
Fig. 6
Fig. 6 (a) Error plot for an AOA node at (1,0,0) detecting a transmitter at (10,10,10); (b) AOA error plot for a node at (3,0,0); (c) AOA error plot for a node at (5,0,0); (d) AOA error plot for a node at (7,0,0).
Fig. 7
Fig. 7 (a) Error plot for detecting a transmitter at (10,10,10) with nodes at xa = yb = zc = 1 m; (b) Error plot with nodes at xa = 1 m, yb = zc = 5 m; (c) Error plot for nodes at xa = yb = zc = 5 m; (d) Error plot for nodes at xa = yb = zc = 15 m.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( x 0 x a ) 2 = cot 2 θ a ( y 0 2 + z 0 2 ),
( y 0 y b ) 2 = cot 2 θ b ( x 0 2 + z 0 2 ),
( z 0 z c ) 2 = cot 2 θ c ( x 0 2 + y 0 2 ),

Metrics