Abstract

The penalty of extending the cavity length of a laser diode when seeking a linewidth reduction is normally revealed by poor side mode suppression, which prevents the laser from operating purely in a single mode of the external cavity. A hybrid laser, based on a C-band semiconductor optical amplifier combined with a long erbium doped fiber external cavity, is carefully engineered to operate with high spectral purity and outstanding stability. For the first time, a side-mode suppression ratio of ≥42 dB, measured at a resolution of 1.16 pm (149 MHz) at all intra-cavity powers above the lasing threshold, is reported. The output power at the peak lasing wavelength is 13.3 dBm. Also, the ability to lock such a hybrid laser to a particular external-cavity mode is realized for the first time. Excluding the effect of mechanical and thermal drifts on the cavity length, the long-term frequency stability is demonstrated to be within ± 11 Hz while the long-term linewidth is 2.26 kHz, measured using the self-beating technique under free running conditions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Side mode suppression using a doped fiber in a long external-cavity semiconductor laser operating at 1490 nm

Runnan Liu, Irina A. Kostko, Ke Wu, and Raman Kashyap
Opt. Express 14(20) 9042-9050 (2006)

Stabilized and wavelength-tunable S-Band erbium-doped fiber ring laser with single-longitudinal-mode operation

Chien-Hung Yeh, Ming-Ching Lin, and Sien Chi
Opt. Express 13(18) 6828-6832 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. Cliche, Y. Painchaud, C. Latrasse, M. Picard, I. Alexandre, and M. Têtu, “Ultra-narrow Bragg grating for active semiconductor laser linewidth reduction through electrical feedback,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (Optical Society of America, 2007), paper BTuE2.
  2. F. Aflatouni, B. Abiri, A. Rekhi, H. Abediasl, H. Hashemi, and A. Hajimiri, “Electronic laser phase noise reduction,” in Radio Frequency Integrated Circuits Symposium (IEEE, 2013), pp. 265–268.
  3. L. Rodríguez-Cobo, M. A. Quintela, S. Rota-Rodrigo, M. López-Amo, and J. M. López-Higuera, “Single-longitudinal mode laser structure based on a very narrow filtering technique,” Opt. Express 21(8), 10289–10294 (2013).
    [Crossref] [PubMed]
  4. R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).
  5. Y. Painchaud, M. Aubé, G. Brochu, and M. Picard, “Ultra-narrowband notch filtering with highly resonant fiber Bragg gratings,” in Advanced Photonics & Renewable Energy, OSA Technical Digest (Optical Society of America, 2010), paper BTuC3.
  6. K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser,” Opt. Express 16(18), 14173–14179 (2008).
    [Crossref] [PubMed]
  7. J. Tang and J. Sun, “Stable and widely tunable wavelength-spacing single longitudinal mode dual-wavelength erbium-doped fiber laser,” Opt. Fiber Technol. 16(5), 299–303 (2010).
    [Crossref]
  8. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006).
    [Crossref]
  9. W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, “Single frequency erbium fiber external cavity semiconductor laser,” Appl. Phys. Lett. 66(25), 3422–3424 (1995).
    [Crossref]
  10. H. Rideout, R. Liu, J. Seregelyi, S. Paquet, and R. Kashyap, “Microwave signal generation using an erbium-doped external cavity laser,” Proc. SPIE 7099, Photonics North, 70990O (2008).
    [Crossref]
  11. P. Morton, V. Mizrahi, P. Lemaire, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, S. Woodward, M. Phillips, A. Sergent, and K. Hecht, “High-power, narrow-linewidth, stable single-mode hybrid laser,” in Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), paper WG4.
  12. D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A. Fatah, and K. H. Cameron, “Narrow line semiconductor laser using fibre grating,” Electron. Lett. 27(13), 1115–1116 (1991).
    [Crossref]
  13. P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
    [Crossref]
  14. F. Timofeev and R. Kashyap, “High-power, ultra-stable, single-frequency operation of a long, doped-fiber external-cavity, grating-semiconductor laser,” Opt. Express 11(6), 515–520 (2003).
    [Crossref] [PubMed]
  15. R. Liu, I. A. Kostko, K. Wu, and R. Kashyap, “Side mode suppression using a doped fiber in a long external-cavity semiconductor laser operating at 1490 nm,” Opt. Express 14(20), 9042–9050 (2006).
    [Crossref] [PubMed]
  16. M. Wahbeh, R. Kashyap, L. Wen-Yi, W. Po-Yi, L. Hai-Han, and J. Seregelyi, “Long term stability of a long intra-cavity saturable absorber external cavity semiconductor laser,” in International Conference on Advanced Infocomm Technology (ICAIT), (IEEE, 2013), pp. 95–96.
    [Crossref]
  17. W. Rideout, R. Holmstrom, J. LaCourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26(1), 36–38 (1990).
    [Crossref]
  18. P. Zorabedian, “Axial-mode instability in tunable external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 30(7), 1542–1552 (1994).
    [Crossref]
  19. R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, “Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber,” Opt. Commun. 255(3), 65–71 (2005).
    [Crossref]
  20. R. Kashyap, Fiber Bragg Gratings (Elsevier Science, 2009), p.388, 172.
  21. H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35(9), 2581–2585 (1964).
    [Crossref]
  22. M. Yamada and Y. Suematsu, “Analysis of gain suppression in undoped injection lasers,” J. Appl. Phys. 52(4), 2653–2664 (1981).
    [Crossref]
  23. A. Yariv, Quantum Electronics (Wiley, 1989), p.161.
  24. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett. 20(8), 875–877 (1995).
    [Crossref] [PubMed]
  25. Y. Sidorin and D. Howe, “Diode-laser-to-waveguide butt coupling: extremely short external cavity,” Appl. Opt. 36(18), 4273–4277 (1997).
    [Crossref] [PubMed]
  26. Y. Sidorin and D. Howe, “Laser-diode wavelength tuning based on butt coupling into an optical fiber,” Opt. Lett. 22(11), 802–804 (1997).
    [Crossref] [PubMed]
  27. A. E. Siegman, Lasers (University Science Books, 1986) p. 526.
  28. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [Crossref]
  29. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 1996), p.251.
  30. D. Derickson, Fiber optic test and Measurement (Prentice Hall PTR, 1998), p.187.
  31. E. Patzak, A. Sugimura, S. Saito, T. Mukai, and H. Olesen, “Semiconductor laser linewidth in optical feedback configurations,” Electron. Lett. 19(24), 1026–1027 (1983).
    [Crossref]

2013 (1)

2010 (1)

J. Tang and J. Sun, “Stable and widely tunable wavelength-spacing single longitudinal mode dual-wavelength erbium-doped fiber laser,” Opt. Fiber Technol. 16(5), 299–303 (2010).
[Crossref]

2008 (1)

2006 (3)

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006).
[Crossref]

R. Liu, I. A. Kostko, K. Wu, and R. Kashyap, “Side mode suppression using a doped fiber in a long external-cavity semiconductor laser operating at 1490 nm,” Opt. Express 14(20), 9042–9050 (2006).
[Crossref] [PubMed]

2005 (1)

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, “Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber,” Opt. Commun. 255(3), 65–71 (2005).
[Crossref]

2003 (1)

1997 (2)

1995 (2)

Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett. 20(8), 875–877 (1995).
[Crossref] [PubMed]

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, “Single frequency erbium fiber external cavity semiconductor laser,” Appl. Phys. Lett. 66(25), 3422–3424 (1995).
[Crossref]

1994 (2)

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

P. Zorabedian, “Axial-mode instability in tunable external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 30(7), 1542–1552 (1994).
[Crossref]

1991 (1)

D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A. Fatah, and K. H. Cameron, “Narrow line semiconductor laser using fibre grating,” Electron. Lett. 27(13), 1115–1116 (1991).
[Crossref]

1990 (1)

W. Rideout, R. Holmstrom, J. LaCourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26(1), 36–38 (1990).
[Crossref]

1983 (1)

E. Patzak, A. Sugimura, S. Saito, T. Mukai, and H. Olesen, “Semiconductor laser linewidth in optical feedback configurations,” Electron. Lett. 19(24), 1026–1027 (1983).
[Crossref]

1982 (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

1981 (1)

M. Yamada and Y. Suematsu, “Analysis of gain suppression in undoped injection lasers,” J. Appl. Phys. 52(4), 2653–2664 (1981).
[Crossref]

1964 (1)

H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35(9), 2581–2585 (1964).
[Crossref]

Abediasl, H.

F. Aflatouni, B. Abiri, A. Rekhi, H. Abediasl, H. Hashemi, and A. Hajimiri, “Electronic laser phase noise reduction,” in Radio Frequency Integrated Circuits Symposium (IEEE, 2013), pp. 265–268.

Abiri, B.

F. Aflatouni, B. Abiri, A. Rekhi, H. Abediasl, H. Hashemi, and A. Hajimiri, “Electronic laser phase noise reduction,” in Radio Frequency Integrated Circuits Symposium (IEEE, 2013), pp. 265–268.

Aflatouni, F.

F. Aflatouni, B. Abiri, A. Rekhi, H. Abediasl, H. Hashemi, and A. Hajimiri, “Electronic laser phase noise reduction,” in Radio Frequency Integrated Circuits Symposium (IEEE, 2013), pp. 265–268.

Armitage, J. R.

D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A. Fatah, and K. H. Cameron, “Narrow line semiconductor laser using fibre grating,” Electron. Lett. 27(13), 1115–1116 (1991).
[Crossref]

Baillard, X.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006).
[Crossref]

Bartolo, R. E.

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).

Bird, D. M.

D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A. Fatah, and K. H. Cameron, “Narrow line semiconductor laser using fibre grating,” Electron. Lett. 27(13), 1115–1116 (1991).
[Crossref]

Bize, S.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006).
[Crossref]

Cameron, K. H.

D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A. Fatah, and K. H. Cameron, “Narrow line semiconductor laser using fibre grating,” Electron. Lett. 27(13), 1115–1116 (1991).
[Crossref]

Cheng, Y.

Clairon, A.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006).
[Crossref]

Erdogan, T.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Farries, M. C.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, “Single frequency erbium fiber external cavity semiconductor laser,” Appl. Phys. Lett. 66(25), 3422–3424 (1995).
[Crossref]

Fatah, R. M. A.

D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A. Fatah, and K. H. Cameron, “Narrow line semiconductor laser using fibre grating,” Electron. Lett. 27(13), 1115–1116 (1991).
[Crossref]

Gauguet, A.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006).
[Crossref]

Hai-Han, L.

M. Wahbeh, R. Kashyap, L. Wen-Yi, W. Po-Yi, L. Hai-Han, and J. Seregelyi, “Long term stability of a long intra-cavity saturable absorber external cavity semiconductor laser,” in International Conference on Advanced Infocomm Technology (ICAIT), (IEEE, 2013), pp. 95–96.
[Crossref]

Hajimiri, A.

F. Aflatouni, B. Abiri, A. Rekhi, H. Abediasl, H. Hashemi, and A. Hajimiri, “Electronic laser phase noise reduction,” in Radio Frequency Integrated Circuits Symposium (IEEE, 2013), pp. 265–268.

Hashemi, H.

F. Aflatouni, B. Abiri, A. Rekhi, H. Abediasl, H. Hashemi, and A. Hajimiri, “Electronic laser phase noise reduction,” in Radio Frequency Integrated Circuits Symposium (IEEE, 2013), pp. 265–268.

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Holmstrom, R.

W. Rideout, R. Holmstrom, J. LaCourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26(1), 36–38 (1990).
[Crossref]

Howe, D.

Kang, J. U.

Kashyap, R.

R. Liu, I. A. Kostko, K. Wu, and R. Kashyap, “Side mode suppression using a doped fiber in a long external-cavity semiconductor laser operating at 1490 nm,” Opt. Express 14(20), 9042–9050 (2006).
[Crossref] [PubMed]

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, “Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber,” Opt. Commun. 255(3), 65–71 (2005).
[Crossref]

F. Timofeev and R. Kashyap, “High-power, ultra-stable, single-frequency operation of a long, doped-fiber external-cavity, grating-semiconductor laser,” Opt. Express 11(6), 515–520 (2003).
[Crossref] [PubMed]

D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A. Fatah, and K. H. Cameron, “Narrow line semiconductor laser using fibre grating,” Electron. Lett. 27(13), 1115–1116 (1991).
[Crossref]

M. Wahbeh, R. Kashyap, L. Wen-Yi, W. Po-Yi, L. Hai-Han, and J. Seregelyi, “Long term stability of a long intra-cavity saturable absorber external cavity semiconductor laser,” in International Conference on Advanced Infocomm Technology (ICAIT), (IEEE, 2013), pp. 95–96.
[Crossref]

Kiiveri, P.

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, “Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber,” Opt. Commun. 255(3), 65–71 (2005).
[Crossref]

Kirkendall, C. K.

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).

Koren, U.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, “Single frequency erbium fiber external cavity semiconductor laser,” Appl. Phys. Lett. 66(25), 3422–3424 (1995).
[Crossref]

Kostko, I. A.

R. Liu, I. A. Kostko, K. Wu, and R. Kashyap, “Side mode suppression using a doped fiber in a long external-cavity semiconductor laser operating at 1490 nm,” Opt. Express 14(20), 9042–9050 (2006).
[Crossref] [PubMed]

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, “Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber,” Opt. Commun. 255(3), 65–71 (2005).
[Crossref]

Kringlebotn, J. T.

Kupershmidt, V.

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).

LaCourse, J.

W. Rideout, R. Holmstrom, J. LaCourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26(1), 36–38 (1990).
[Crossref]

Laming, R. I.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, “Single frequency erbium fiber external cavity semiconductor laser,” Appl. Phys. Lett. 66(25), 3422–3424 (1995).
[Crossref]

Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett. 20(8), 875–877 (1995).
[Crossref] [PubMed]

Laurent, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006).
[Crossref]

Lavine, J. M.

H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35(9), 2581–2585 (1964).
[Crossref]

Lemaire, P. J.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Lemonde, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006).
[Crossref]

Liu, R.

Liu, R. N.

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, “Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber,” Opt. Commun. 255(3), 65–71 (2005).
[Crossref]

Logan, R. A.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Loh, W. H.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, “Single frequency erbium fiber external cavity semiconductor laser,” Appl. Phys. Lett. 66(25), 3422–3424 (1995).
[Crossref]

Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett. 20(8), 875–877 (1995).
[Crossref] [PubMed]

López-Amo, M.

López-Higuera, J. M.

Meland, E.

W. Rideout, R. Holmstrom, J. LaCourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26(1), 36–38 (1990).
[Crossref]

Mizrahi, V.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Morton, P. A.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Mukai, T.

E. Patzak, A. Sugimura, S. Saito, T. Mukai, and H. Olesen, “Semiconductor laser linewidth in optical feedback configurations,” Electron. Lett. 19(24), 1026–1027 (1983).
[Crossref]

Olesen, H.

E. Patzak, A. Sugimura, S. Saito, T. Mukai, and H. Olesen, “Semiconductor laser linewidth in optical feedback configurations,” Electron. Lett. 19(24), 1026–1027 (1983).
[Crossref]

Patzak, E.

E. Patzak, A. Sugimura, S. Saito, T. Mukai, and H. Olesen, “Semiconductor laser linewidth in optical feedback configurations,” Electron. Lett. 19(24), 1026–1027 (1983).
[Crossref]

Payne, D. N.

Phillips, M. R.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Powazinik, W.

W. Rideout, R. Holmstrom, J. LaCourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26(1), 36–38 (1990).
[Crossref]

Po-Yi, W.

M. Wahbeh, R. Kashyap, L. Wen-Yi, W. Po-Yi, L. Hai-Han, and J. Seregelyi, “Long term stability of a long intra-cavity saturable absorber external cavity semiconductor laser,” in International Conference on Advanced Infocomm Technology (ICAIT), (IEEE, 2013), pp. 95–96.
[Crossref]

Presby, H. M.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Quintela, M. A.

Rekhi, A.

F. Aflatouni, B. Abiri, A. Rekhi, H. Abediasl, H. Hashemi, and A. Hajimiri, “Electronic laser phase noise reduction,” in Radio Frequency Integrated Circuits Symposium (IEEE, 2013), pp. 265–268.

Rideout, W.

W. Rideout, R. Holmstrom, J. LaCourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26(1), 36–38 (1990).
[Crossref]

Rodríguez-Cobo, L.

Rosenbusch, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006).
[Crossref]

Rota-Rodrigo, S.

Saito, S.

E. Patzak, A. Sugimura, S. Saito, T. Mukai, and H. Olesen, “Semiconductor laser linewidth in optical feedback configurations,” Electron. Lett. 19(24), 1026–1027 (1983).
[Crossref]

Seregelyi, J.

M. Wahbeh, R. Kashyap, L. Wen-Yi, W. Po-Yi, L. Hai-Han, and J. Seregelyi, “Long term stability of a long intra-cavity saturable absorber external cavity semiconductor laser,” in International Conference on Advanced Infocomm Technology (ICAIT), (IEEE, 2013), pp. 95–96.
[Crossref]

Sergent, A. M.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Siala, S.

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).

Sidorin, Y.

Sipe, J. E.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Statz, H.

H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35(9), 2581–2585 (1964).
[Crossref]

Suematsu, Y.

M. Yamada and Y. Suematsu, “Analysis of gain suppression in undoped injection lasers,” J. Appl. Phys. 52(4), 2653–2664 (1981).
[Crossref]

Sugimura, A.

E. Patzak, A. Sugimura, S. Saito, T. Mukai, and H. Olesen, “Semiconductor laser linewidth in optical feedback configurations,” Electron. Lett. 19(24), 1026–1027 (1983).
[Crossref]

Sun, J.

J. Tang and J. Sun, “Stable and widely tunable wavelength-spacing single longitudinal mode dual-wavelength erbium-doped fiber laser,” Opt. Fiber Technol. 16(5), 299–303 (2010).
[Crossref]

Tanbun-Ek, T.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Tang, C. L.

H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35(9), 2581–2585 (1964).
[Crossref]

Tang, J.

J. Tang and J. Sun, “Stable and widely tunable wavelength-spacing single longitudinal mode dual-wavelength erbium-doped fiber laser,” Opt. Fiber Technol. 16(5), 299–303 (2010).
[Crossref]

Timofeev, F.

Wahbeh, M.

M. Wahbeh, R. Kashyap, L. Wen-Yi, W. Po-Yi, L. Hai-Han, and J. Seregelyi, “Long term stability of a long intra-cavity saturable absorber external cavity semiconductor laser,” in International Conference on Advanced Infocomm Technology (ICAIT), (IEEE, 2013), pp. 95–96.
[Crossref]

Wecht, K. W.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Wen-Yi, L.

M. Wahbeh, R. Kashyap, L. Wen-Yi, W. Po-Yi, L. Hai-Han, and J. Seregelyi, “Long term stability of a long intra-cavity saturable absorber external cavity semiconductor laser,” in International Conference on Advanced Infocomm Technology (ICAIT), (IEEE, 2013), pp. 95–96.
[Crossref]

Woodward, S. L.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Wu, K.

R. Liu, I. A. Kostko, K. Wu, and R. Kashyap, “Side mode suppression using a doped fiber in a long external-cavity semiconductor laser operating at 1490 nm,” Opt. Express 14(20), 9042–9050 (2006).
[Crossref] [PubMed]

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, “Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber,” Opt. Commun. 255(3), 65–71 (2005).
[Crossref]

Yamada, M.

M. Yamada and Y. Suematsu, “Analysis of gain suppression in undoped injection lasers,” J. Appl. Phys. 52(4), 2653–2664 (1981).
[Crossref]

Zervas, M. N.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, “Single frequency erbium fiber external cavity semiconductor laser,” Appl. Phys. Lett. 66(25), 3422–3424 (1995).
[Crossref]

Zhang, K.

Zorabedian, P.

P. Zorabedian, “Axial-mode instability in tunable external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 30(7), 1542–1552 (1994).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, “Single frequency erbium fiber external cavity semiconductor laser,” Appl. Phys. Lett. 66(25), 3422–3424 (1995).
[Crossref]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Electron. Lett. (3)

W. Rideout, R. Holmstrom, J. LaCourse, E. Meland, and W. Powazinik, “Ultra-low-reflectivity semiconductor optical amplifiers without antireflection coatings,” Electron. Lett. 26(1), 36–38 (1990).
[Crossref]

D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A. Fatah, and K. H. Cameron, “Narrow line semiconductor laser using fibre grating,” Electron. Lett. 27(13), 1115–1116 (1991).
[Crossref]

E. Patzak, A. Sugimura, S. Saito, T. Mukai, and H. Olesen, “Semiconductor laser linewidth in optical feedback configurations,” Electron. Lett. 19(24), 1026–1027 (1983).
[Crossref]

IEEE J. Quantum Electron. (2)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

P. Zorabedian, “Axial-mode instability in tunable external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 30(7), 1542–1552 (1994).
[Crossref]

J. Appl. Phys. (2)

H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,” J. Appl. Phys. 35(9), 2581–2585 (1964).
[Crossref]

M. Yamada and Y. Suematsu, “Analysis of gain suppression in undoped injection lasers,” J. Appl. Phys. 52(4), 2653–2664 (1981).
[Crossref]

Opt. Commun. (2)

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266(2), 609–613 (2006).
[Crossref]

R. N. Liu, I. A. Kostko, R. Kashyap, K. Wu, and P. Kiiveri, “Inband-pumped, broadband bleaching of absorption and refractive index changes in erbium-doped fiber,” Opt. Commun. 255(3), 65–71 (2005).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

J. Tang and J. Sun, “Stable and widely tunable wavelength-spacing single longitudinal mode dual-wavelength erbium-doped fiber laser,” Opt. Fiber Technol. 16(5), 299–303 (2010).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).

Other (11)

Y. Painchaud, M. Aubé, G. Brochu, and M. Picard, “Ultra-narrowband notch filtering with highly resonant fiber Bragg gratings,” in Advanced Photonics & Renewable Energy, OSA Technical Digest (Optical Society of America, 2010), paper BTuC3.

J. Cliche, Y. Painchaud, C. Latrasse, M. Picard, I. Alexandre, and M. Têtu, “Ultra-narrow Bragg grating for active semiconductor laser linewidth reduction through electrical feedback,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (Optical Society of America, 2007), paper BTuE2.

F. Aflatouni, B. Abiri, A. Rekhi, H. Abediasl, H. Hashemi, and A. Hajimiri, “Electronic laser phase noise reduction,” in Radio Frequency Integrated Circuits Symposium (IEEE, 2013), pp. 265–268.

H. Rideout, R. Liu, J. Seregelyi, S. Paquet, and R. Kashyap, “Microwave signal generation using an erbium-doped external cavity laser,” Proc. SPIE 7099, Photonics North, 70990O (2008).
[Crossref]

P. Morton, V. Mizrahi, P. Lemaire, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, S. Woodward, M. Phillips, A. Sergent, and K. Hecht, “High-power, narrow-linewidth, stable single-mode hybrid laser,” in Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), paper WG4.

M. Wahbeh, R. Kashyap, L. Wen-Yi, W. Po-Yi, L. Hai-Han, and J. Seregelyi, “Long term stability of a long intra-cavity saturable absorber external cavity semiconductor laser,” in International Conference on Advanced Infocomm Technology (ICAIT), (IEEE, 2013), pp. 95–96.
[Crossref]

R. Kashyap, Fiber Bragg Gratings (Elsevier Science, 2009), p.388, 172.

A. E. Siegman, Lasers (University Science Books, 1986) p. 526.

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 1996), p.251.

D. Derickson, Fiber optic test and Measurement (Prentice Hall PTR, 1998), p.187.

A. Yariv, Quantum Electronics (Wiley, 1989), p.161.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the hybrid laser. (b) Optical backscatter reflectometer (OBR 4600) spectrum illustrating the exact length of each fiber section in the FECL device, where the scan range of the OBR is set to 41 nm (1525-1566 nm).
Fig. 2
Fig. 2 (a) Simulated reflectivity of the external 1-cm-long FBG compared to that of the 34-cm dynamic grating. The dynamic grating is zoomed in (b) and shown along with the spectral locations (vertical lines) of the allowed equally-spaced cavity modes, which all have near zero reflectivity except the one in the main lobe.
Fig. 3
Fig. 3 Experimental setup to (a) observe single-frequency operation of the hybrid laser and (b) to verify the mode spacing using heterodyne detection.
Fig. 4
Fig. 4 (a) Optical spectrum showing a single and sharp spike indicating single-frequency operation. (b) Averaged electrical spectra of the hybrid laser, collected every 1 second over a period of 30 minutes, are overlaid (dark lines) and compared to the noise floor spectrum (orange line) (c) Long-term wavelength stability within ± 0.2 pm is measured over a period of ~45 minutes and shown in terms of the mode spacing, where the spectral drift is offset to the operating wavelength and is normalized to the mode spacing Δλ = 2.32 pm.
Fig. 5
Fig. 5 (a) Optical spectra of the hybrid device illustrating the equally-spaced side-modes and their SMSRs at different drive currents. (b) Electrical spectrum of heterodyne beat notes compared to the self-mode beat spectrum.
Fig. 6
Fig. 6 (a) Optical spectrum of the hybrid device illustrating the subcavity modes along with the dominant mode, observed in single-frequency operation. The operating modes are spaced equally by 10 mode spacings. (b) Effective field reflectance, simulated as a function of the operating wavelength, is illustrated for the subcavity (blue line) and the hybrid laser (gray line). The reflection peaks of both are overlapped when the subcavity is constituted by 15 passes, which is exactly one-tenth of the hybrid device cavity. The resultant optical feedback disturbs mode competition and hence, the side modes are observed in the optical measurement and spaced at 10 × the mode spacing of the hybrid external cavity.
Fig. 7
Fig. 7 (a) Electrical spectrum showing the equally-spaced microwave self-beat notes of the operating modes, demonstrated in the optical spectrum in Fig. 6(a). (b) Linewidth measurement of the hybrid device using self-beating technique. The frequency is offset at 2986.8 MHz. The instantaneous linewidth is 2.238 kHz, half the width of the beat note whose frequency drift, 226 kHz, is demonstrated using the maximum hold option offered by the ESA. The long-term linewidth is deduced to be 2.26 kHz. The difference between the instantaneous and long-term linewidth, 22 Hz, represents the long-term spectral stability of this device once it is packaged.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dR dz =iσR(z)+i κ ac S(z) dS dz =iσS(z)+i κ ac * R(z),
dR dz =iσR(z)+i κ ac S(z) dS dz =iσS(z)+i κ ac * R(z),
κ ac = 2 Δn nλ .
κ ac = πΔn λ 1 2 [ 1+cos( π(z L FBG /2) L FBG ) ].
R eff ( L sub ,λ)=R+ 1 R 2 R N=1 C( R R f exp(i2π n sub L sub λ ) ) 2N ,
R eff (L,λ)= R A ( 1 R f ρ g f ) g air ( R f ρ g f ) 1 R A R f g air R f ρ g f + R A ρ g air g f ,
Δ v d =Δ v SOA ( τ SOA τ SOA + τ ext ) 2 .
Δ v longterm Δ v d = ( τ subcavity τ cavity ) 2 ,

Metrics