Abstract

In this work, a Fabry-Perot cavity based on a new silica tube design is proposed. The tube presents a cladding with a thickness of ~14 μm and a hollow core. The presence of four small rods, of ~20 μm diameter each, placed in diametrically opposite positions ensure the mechanical stability of the tube. The cavity, formed by splicing a section of the silica tube between two sections of single mode fiber, is characterized in strain and temperature (from room temperature to 900 °C). When the sensor is exposed to high temperatures, there is a change in the response to strain. The influence of the thermal annealing is investigated in order to improve the sensing head performance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sapphire derived fiber based Fabry-Perot interferometer with an etched micro air cavity for strain measurement at high temperatures

Penghao Zhang, Li Zhang, Zhongyu Wang, Xinying Zhang, and Zhendong Shang
Opt. Express 27(19) 27112-27123 (2019)

Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber

Marta S. Ferreira, Jörg Bierlich, Jens Kobelke, Kay Schuster, José L. Santos, and Orlando Frazão
Opt. Express 20(20) 21946-21952 (2012)

High temperature strain sensing with alumina ceramic derived fiber based Fabry-Perot interferometer

Z. Wang, H. Liu, Z. Ma, Z. Chen, T. Wang, and F. Pang
Opt. Express 27(20) 27691-27701 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Chen and H. F. Taylor, “Multiplexed fiber Fabry-Perot temperature sensor system using white-light interferometry,” Opt. Lett. 27(11), 903–905 (2002).
    [Crossref] [PubMed]
  2. L.-C. Xu, M. Deng, D.-W. Duan, W.-P. Wen, and M. Han, “High-temperature measurement by using a PCF-based Fabry-Perot interferometer,” Opt. Lasers Eng. 50(10), 1391–1396 (2012).
    [Crossref]
  3. M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
    [Crossref] [PubMed]
  4. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  5. H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [PubMed]
  6. D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Pérot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47(6), 401–403 (2011).
    [Crossref]
  7. J.-L. Kou, J. Feng, L. Ye, F. Xu, and Y.-Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [Crossref] [PubMed]
  8. T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [Crossref] [PubMed]
  9. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
    [Crossref] [PubMed]
  10. P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun. 285(6), 1159–1162 (2012).
    [Crossref]
  11. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
    [Crossref] [PubMed]
  12. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [Crossref] [PubMed]
  13. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
    [Crossref] [PubMed]
  14. D.-W. Duan, Y.-J. Rao, Y.-S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
    [Crossref] [PubMed]
  15. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
    [Crossref] [PubMed]
  16. M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-based Fabry-Pérot interferometric sensor for strain measurement at high temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
    [Crossref]
  17. K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).
  18. M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
    [Crossref] [PubMed]
  19. O. Mazurin, M. Streltsina, and T. Shvaiko-Shvaikovskaia, “Handbook of glass data. Part A: silica glass and binary silicate glasses,” 15 (1983).
  20. J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
    [Crossref]

2014 (2)

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

2012 (5)

2011 (3)

M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
[Crossref] [PubMed]

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Pérot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47(6), 401–403 (2011).
[Crossref]

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-based Fabry-Pérot interferometric sensor for strain measurement at high temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (2)

2007 (2)

2002 (1)

1974 (1)

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

Aichele, C.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Araujo, L.

Bartelt, H.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Bierlich, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
[Crossref] [PubMed]

Bouwmans, G.

Bucaro, J. A.

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

Chen, Y.

Choi, E. S.

Choi, H. Y.

Coelho, L.

Coviello, G.

Dardy, H. D.

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

Deng, H. Y.

Deng, M.

L.-C. Xu, M. Deng, D.-W. Duan, W.-P. Wen, and M. Han, “High-temperature measurement by using a PCF-based Fabry-Perot interferometer,” Opt. Lasers Eng. 50(10), 1391–1396 (2012).
[Crossref]

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-based Fabry-Pérot interferometric sensor for strain measurement at high temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

Duan, D. W.

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Pérot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47(6), 401–403 (2011).
[Crossref]

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
[Crossref] [PubMed]

Duan, D.-W.

D.-W. Duan, Y.-J. Rao, Y.-S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
[Crossref] [PubMed]

L.-C. Xu, M. Deng, D.-W. Duan, W.-P. Wen, and M. Han, “High-temperature measurement by using a PCF-based Fabry-Perot interferometer,” Opt. Lasers Eng. 50(10), 1391–1396 (2012).
[Crossref]

Favero, F. C.

Feng, J.

Ferreira, M. S.

Finazzi, V.

Frazão, O.

Grimm, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Han, M.

L.-C. Xu, M. Deng, D.-W. Duan, W.-P. Wen, and M. Han, “High-temperature measurement by using a PCF-based Fabry-Perot interferometer,” Opt. Lasers Eng. 50(10), 1391–1396 (2012).
[Crossref]

Han, Y.

Hou, Y.-S.

Jorge, P. A. S.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun. 285(6), 1159–1162 (2012).
[Crossref]

Kobelke, J.

Kou, J.-L.

Lee, B. H.

Li, Z.

Liao, C.

Liao, X.

Lindner, F.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Litzkendorf, D.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Liu, S.

Lu, Y.-Q.

Mudhana, G.

Paek, U.-C.

Park, K. S.

Park, S. J.

Pruneri, V.

Ran, Z. L.

Rao, Y. J.

Rao, Y.-J.

D.-W. Duan, Y.-J. Rao, Y.-S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
[Crossref] [PubMed]

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-based Fabry-Pérot interferometric sensor for strain measurement at high temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

Santos, J. L.

Schuster, K.

Tafulo, P. A. R.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun. 285(6), 1159–1162 (2012).
[Crossref]

Tang, C.-P.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-based Fabry-Pérot interferometric sensor for strain measurement at high temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

Tang, J.

Taylor, H. F.

Tsai, H.-L.

Unger, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Villatoro, J.

Wang, G.

Wang, Q.

Wang, Y.

Wei, T.

Wen, W. P.

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Pérot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47(6), 401–403 (2011).
[Crossref]

Wen, W.-P.

L.-C. Xu, M. Deng, D.-W. Duan, W.-P. Wen, and M. Han, “High-temperature measurement by using a PCF-based Fabry-Perot interferometer,” Opt. Lasers Eng. 50(10), 1391–1396 (2012).
[Crossref]

Wondraczek, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Wu, D.

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Pérot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47(6), 401–403 (2011).
[Crossref]

Xiao, H.

Xu, F.

Xu, L. C.

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Pérot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47(6), 401–403 (2011).
[Crossref]

Xu, L.-C.

L.-C. Xu, M. Deng, D.-W. Duan, W.-P. Wen, and M. Han, “High-temperature measurement by using a PCF-based Fabry-Perot interferometer,” Opt. Lasers Eng. 50(10), 1391–1396 (2012).
[Crossref]

Yang, K.

Yang, X. C.

Yao, J.

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Pérot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47(6), 401–403 (2011).
[Crossref]

Ye, L.

Zhao, J.

Zhong, X.

Zhou, J.

Zhu, T.

D.-W. Duan, Y.-J. Rao, Y.-S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
[Crossref] [PubMed]

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Pérot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47(6), 401–403 (2011).
[Crossref]

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-based Fabry-Pérot interferometric sensor for strain measurement at high temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
[Crossref] [PubMed]

Adv. Opt. Technol. (1)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Appl. Opt. (1)

Electron. Lett. (1)

D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Pérot interferometer high temperature sensor formed by large lateral offset splicing,” Electron. Lett. 47(6), 401–403 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-based Fabry-Pérot interferometric sensor for strain measurement at high temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

J. Appl. Phys. (1)

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

Opt. Commun. (1)

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun. 285(6), 1159–1162 (2012).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

L.-C. Xu, M. Deng, D.-W. Duan, W.-P. Wen, and M. Han, “High-temperature measurement by using a PCF-based Fabry-Perot interferometer,” Opt. Lasers Eng. 50(10), 1391–1396 (2012).
[Crossref]

Opt. Lett. (8)

Y. Chen and H. F. Taylor, “Multiplexed fiber Fabry-Perot temperature sensor system using white-light interferometry,” Opt. Lett. 27(11), 903–905 (2002).
[Crossref] [PubMed]

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
[Crossref] [PubMed]

Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
[Crossref] [PubMed]

T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[Crossref] [PubMed]

H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
[Crossref] [PubMed]

M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Other (1)

O. Mazurin, M. Streltsina, and T. Shvaiko-Shvaikovskaia, “Handbook of glass data. Part A: silica glass and binary silicate glasses,” 15 (1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Micrographs of drawn fibers, varying the pressure during fiber drawing: (a) p = 1000 Pa, (b) p = 2300 Pa and (c) p = 3000 Pa.
Fig. 2
Fig. 2 Scheme of the experimental setup. A microscope photograph of one FP cavity is also shown.
Fig. 3
Fig. 3 Spectra of the four FP cavity sensors with lengths of (a) 17 μm, (b) 51 μm, (c) 70 μm and (d) 198 μm.
Fig. 4
Fig. 4 (a) FP cavity sensors response to the applied strain. (b) The 198 μm long FP cavity sensor response to temperature.
Fig. 5
Fig. 5 Response of the 70 μm long FP cavity to the applied strain at (a) room temperature, (b) 750 °C, (c) 850 °C and (d) 900 °C. Up and down stand for increasing and decreasing the applied strain, respectively.
Fig. 6
Fig. 6 Wavelength shift of the 51 μm long FP cavity for an annealing temperature of 900 °C.
Fig. 7
Fig. 7 Response of the 51 μm long FP cavity to the applied strain at (a) room temperature, (b) 750 °C, (c) 850 °C and (d) 900 °C, after an annealing period of 7 hours, at 900 °C. Up and Down stand for increasing and decreasing the applied strain.
Fig. 8
Fig. 8 Dependence of the strain sensitivity at different temperatures (a) without annealing and (b) with annealing.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L FP = λ 1 λ 2 / ( 2 n eff Δλ )

Metrics