Abstract

We designed and implemented periodic bar arrays metamaterials to select appropriate frequencies of terahertz (THz) waves propagating in a LiNbO3 sub-wavelength waveguide. The spatial and temporal electric field profiles of the THz waves were recorded using a time-resolved phase-contrast imaging system. The metamaterials can operate as a band-stop filter to realize blocking back THz waves in a band range of 0.6–1.0 THz, while transparent transmission for the fundamental mode of the slab over a range of 0.3–0.6 THz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths

Zhongchao Wei, Xianping Li, Jianjun Yin, Rong Huang, Yuebo Liu, Wei Wang, Hongzhan Liu, Hongyun Meng, and Ruisheng Liang
Opt. Express 24(13) 14344-14351 (2016)

On-chip plasmon-induced transparency in THz metamaterial on a LiNbO3 subwavelength planar waveguide

Wenjuan Zhao, Jiwei Qi, Yao Lu, Ride Wang, Qi Zhang, Hao Xiong, Yaqing Zhang, Qiang Wu, and Jingjun Xu
Opt. Express 27(5) 7373-7383 (2019)

Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide

Chengliang Yang, Qiang Wu, Jingjun Xu, Keith A. Nelson, and Christopher A. Werley
Opt. Express 18(25) 26351-26364 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
    [Crossref]
  2. N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
    [Crossref]
  3. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
    [Crossref]
  4. Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
    [Crossref]
  5. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-pace radiation from electroptic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
    [Crossref]
  6. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. B 9(12), 2179–2189 (1992).
    [Crossref]
  7. T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatio-temporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
    [Crossref] [PubMed]
  8. P. Peier, H. Merbold, V. Pahinin, K. A. Nelson, and T. Feurer, “Imaging of THz waves in 2D photonic crystal structures embedded in a slab waveguide,” New J. Phys. 12(1), 013014 (2010).
    [Crossref]
  9. B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(1), 053003 (2014).
    [Crossref]
  10. C. A. Werley, K. Fan, A. C. Strickwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2010).
    [Crossref]
  11. K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
    [Crossref]
  12. Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
    [Crossref]
  13. Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
    [Crossref] [PubMed]
  14. C. Yang, Q. Wu, J. Xu, G. Tsakiris, K. A. Nelson, and C. A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Opt. Express 18(25), 26351–26364 (2010).
    [Crossref] [PubMed]
  15. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  16. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  17. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  19. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49(10), 1747–1762 (2002).
    [Crossref]
  20. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  21. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  22. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [Crossref]
  23. H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
    [Crossref]
  24. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
    [Crossref]
  25. J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, and H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86(21), 213503 (2005).
    [Crossref]

2014 (1)

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(1), 053003 (2014).
[Crossref]

2013 (1)

Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

2011 (1)

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
[Crossref]

2010 (3)

2009 (2)

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
[Crossref] [PubMed]

2008 (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

2007 (2)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (2)

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, and H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86(21), 213503 (2005).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2003 (1)

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatio-temporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

2002 (2)

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[Crossref]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49(10), 1747–1762 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1999 (1)

R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
[Crossref]

1992 (1)

1990 (1)

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-pace radiation from electroptic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[Crossref]

Adachi, S.

R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
[Crossref]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Auston, D. H.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-pace radiation from electroptic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[Crossref]

Averitt, R. D.

C. A. Werley, K. Fan, A. C. Strickwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2010).
[Crossref]

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Azad, A. K.

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

Bawendi, M. G.

Beere, H. E.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, and H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86(21), 213503 (2005).
[Crossref]

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Chen, H.

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

Chen, Q.-Q.

Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

Chen, Z.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cunningham, J.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, and H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86(21), 213503 (2005).
[Crossref]

Davies, A. G.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, and H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86(21), 213503 (2005).
[Crossref]

Dorn, A.

Dougherty, T. P.

Fan, K.

C. A. Werley, K. Fan, A. C. Strickwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Feurer, T.

P. Peier, H. Merbold, V. Pahinin, K. A. Nelson, and T. Feurer, “Imaging of THz waves in 2D photonic crystal structures embedded in a slab waveguide,” New J. Phys. 12(1), 013014 (2010).
[Crossref]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatio-temporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[Crossref]

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Hu, B. B.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-pace radiation from electroptic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[Crossref]

Hunter, I.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, and H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86(21), 213503 (2005).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Koehl, R. M.

R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Lin, K.-H.

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
[Crossref] [PubMed]

Linfield, E. H.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, and H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86(21), 213503 (2005).
[Crossref]

Merbold, H.

P. Peier, H. Merbold, V. Pahinin, K. A. Nelson, and T. Feurer, “Imaging of THz waves in 2D photonic crystal structures embedded in a slab waveguide,” New J. Phys. 12(1), 013014 (2010).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Nelson, K. A.

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(1), 053003 (2014).
[Crossref]

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
[Crossref]

C. A. Werley, K. Fan, A. C. Strickwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2010).
[Crossref]

C. Yang, Q. Wu, J. Xu, G. Tsakiris, K. A. Nelson, and C. A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Opt. Express 18(25), 26351–26364 (2010).
[Crossref] [PubMed]

P. Peier, H. Merbold, V. Pahinin, K. A. Nelson, and T. Feurer, “Imaging of THz waves in 2D photonic crystal structures embedded in a slab waveguide,” New J. Phys. 12(1), 013014 (2010).
[Crossref]

Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
[Crossref] [PubMed]

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatio-temporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[Crossref]

R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
[Crossref]

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. B 9(12), 2179–2189 (1992).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

O’Hara, J. F.

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

Ofori-Okai, B. K.

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(1), 053003 (2014).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pahinin, V.

P. Peier, H. Merbold, V. Pahinin, K. A. Nelson, and T. Feurer, “Imaging of THz waves in 2D photonic crystal structures embedded in a slab waveguide,” New J. Phys. 12(1), 013014 (2010).
[Crossref]

Peier, P.

P. Peier, H. Merbold, V. Pahinin, K. A. Nelson, and T. Feurer, “Imaging of THz waves in 2D photonic crystal structures embedded in a slab waveguide,” New J. Phys. 12(1), 013014 (2010).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49(10), 1747–1762 (2002).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49(10), 1747–1762 (2002).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schultz, S.

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49(10), 1747–1762 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49(10), 1747–1762 (2002).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Shrekenhamer, D. B.

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

Sivarajah, P.

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(1), 053003 (2014).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49(10), 1747–1762 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Smith, P. R.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-pace radiation from electroptic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Statz, E. R.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Stoyanov, N. S.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[Crossref]

Strickwerda, A. C.

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Taylor, A. J.

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Teo, S. M.

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(1), 053003 (2014).
[Crossref]

C. A. Werley, K. Fan, A. C. Strickwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2010).
[Crossref]

Tsakiris, G.

Vaughan, J. C.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatio-temporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Ward, D. W.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[Crossref]

Werley, C. A.

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(1), 053003 (2014).
[Crossref]

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
[Crossref]

C. Yang, Q. Wu, J. Xu, G. Tsakiris, K. A. Nelson, and C. A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Opt. Express 18(25), 26351–26364 (2010).
[Crossref] [PubMed]

C. A. Werley, K. Fan, A. C. Strickwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2010).
[Crossref]

Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
[Crossref] [PubMed]

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

Wiederrecht, G. P.

Wood, C.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, and H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86(21), 213503 (2005).
[Crossref]

Wu, Q.

Xu, J.

Xu, J.-J.

Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

Yang, C.

Zhang, B.

Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

Zhang, X.

C. A. Werley, K. Fan, A. C. Strickwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhang, X.-C.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-pace radiation from electroptic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[Crossref]

Zhou, X.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
[Crossref]

Annu. Rev. Mater. Res. (1)

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Appl. Phys. Lett. (4)

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-pace radiation from electroptic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[Crossref]

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
[Crossref]

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, and H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86(21), 213503 (2005).
[Crossref]

Front. Phys. (1)

Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

J. Chem. Phys. (1)

R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
[Crossref]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49(10), 1747–1762 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Mater. (1)

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[Crossref]

Nat. Photon. (1)

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2(5), 295–298 (2008).
[Crossref]

New J. Phys. (2)

P. Peier, H. Merbold, V. Pahinin, K. A. Nelson, and T. Feurer, “Imaging of THz waves in 2D photonic crystal structures embedded in a slab waveguide,” New J. Phys. 12(1), 013014 (2010).
[Crossref]

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(1), 053003 (2014).
[Crossref]

Opt. Express (3)

Phys. Rev. B (2)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Phys. Rev. Lett. (3)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Science (4)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatio-temporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

Supplementary Material (1)

» Media 1: MOV (2046 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Metamaterials design and numerical calculation results of reflected spectrum. (a) An individual unit cell of metamaterials, gold bar (yellow) is deposited on the LN slab (grey) surface, the bar width is fixed to 5 μm, L is the bar length, d and g are the gaps between bars along x and z directions, −x direction is the propagation direction of THz waves, the thickness of LN slab is 53 μm along y direction; figures (b)–(d) shows reflected energy flow (S r ) vs frequency as a function of g, L, d, respectively.
Fig. 2
Fig. 2 Overview diagram of the main experimental setup. The sample, a 53 μm thickness LN slab, is imaged onto the CCD camera using three lenses, and the phase plate is placed in the Fourier plane of the first lens. Red beam represents the 800 nm pump beam and tightly focus in LN slab with an incident angle θ = 30°. Blue light represents the 400 nm probe beam and propagates perpendicular to the LN surface. In our setup, f1 = 10 cm, f2 = 15 cm and the focus length of the third lens is 15 cm. The left bottom inset shows schematic illustration of THz generation in LN crystal. Yellow lines represent THz waves generated when the pump is focused into the sample by a 20 cm focal length cylindrical lens. Yellow arrows show the propagation directions of THz waves, which are along the LN plane. Blue probe beam covers the whole sample.
Fig. 3
Fig. 3 ( Media 1) (a) Schematic illustration of pump geometry and LN sample with surfaced metamaterials structure. The 800 nm pump beam (red) propagates through the crystal, while the THz wave (yellow) is guided in the slab. Metamaterials structure is composed of gold bar arrays, which are deposited on the front surface of the sample. The width of bar is w = 5 μm, the length L= 50 μm, and the gaps between bars at x and z directions are both equal to 50 μm. Figures (b)–(d) show the images of the THz electric field distribution taken at different time delays, the region within the red dotted lines is filmed with metamaterials structure. Pictures were captured (b) 20 ps, (c) 40 ps, and (d) 54 ps after THz wave was generated respectively.
Fig. 4
Fig. 4 (a) Space-time plot of the propagating THz waves. Specific THz frequency band is blocked from the edge of metamaterials structure region (Meta region), and specific frequency band of the zeroth-order mode passes through the Meta region (within the dashed lines). The horizontal axis is the x-axis of the coordinate system in Fig. 3 and vertical axis is the delay time between the probe and pump pulses. The white lines are three selected positons for further analysis, x = 2.75 mm in reflection region, x = 1.75 mm in Meta region, and x = 0.5 mm in transmitted region, respectively. The lengths of these white lines are equal to 30 ps. Figures (b) and (c) are the THz field traces (measured at x = 2.75 mm and x = 1.75 mm, respectively) and their normalized Fourier spectrums. These two positions are equidistant to the incident boundary of Meta structure (at x = 2.25 mm). Figure (d) shows comparison of the Fourier spectrum in transmitted region (red, at x = 0.50 mm) with that in reflected region (blue, at x = 2.75 mm).
Fig. 5
Fig. 5 Dispersion curves of the THz waves in the LN slab waveguide computed by taking 2D Fourier transformation of different regions of Fig. 4(a) and corresponding simulation results: (a) the initial incident wave (Inci. Region, 10–30 ps); (b) the Meta Region, 25–60 ps; (c) the transmitted wave (Tran. Region, 40–70 ps), which passes through the whole metamaterials structure; (d) the reflected wave (Relf. Region, 35–50 ps); (e) the transmitted dispersion curves from simulation; (f) the reflected dispersion curves from simulation. The horizontal axis of the figure is the wave vector, and the vertical axis is the frequency of THz wave in the sample. Overlaid on the experimental data (red curves) are the theoretical dispersion curves in air (white line), bulk LN (blue line), and the first three waveguide modes for a 53 μm slab waveguide (green curves).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ φ ( x , z , t ) = 2 π L λ Δ n ( x , z , t ) = 2 π L λ n eo 3 r 33 2 Δ E THz ( x , z , t ) ,

Metrics