Abstract

Recently, silicon-waveguide-based hybrid modulators with high-performance electro-optic materials have been proposed to overcome the intrinsic limitations of silicon materials. Indium-tin-oxide (ITO) is one of the important candidates for such applications due to its unique features including the ENZ effect and electrically tunable permittivity. In this paper, we propose an ultra-compact integrated phase modulator which consists of a silicon slot waveguide with a thin ITO film in the slot region. In the near-infrared regime, bias-voltage-dependent free-carrier accumulation at the dielectric-ITO interface induces an epsilon-near-zero (ENZ) effect, and contributes to the strong phase modulation of the guided electromagnetic wave. With a voltage swing of 2 V, the device experiences a large variation of the effective modal index, resulting in a π radian phase shift within the device length of <5 μm at 210 THz according to our computer simulations. A high modulation efficiency of VπLπ~0.0071 V·cm and a large device bandwidth of ~70 GHz suggest a potential for an ultra-compact optoelectronic component in the integrated silicon photonics platform.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material

Alok P. Vasudev, Ju-Hyung Kang, Junghyun Park, Xiaoge Liu, and Mark L. Brongersma
Opt. Express 21(22) 26387-26397 (2013)

Electro-optic modulation in horizontally slotted silicon/organic crystal hybrid devices

Harry Figi, Denise H. Bale, Attila Szep, Larry R. Dalton, and Antao Chen
J. Opt. Soc. Am. B 28(9) 2291-2300 (2011)

Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator

Jan Hendrik Wülbern, Alexander Petrov, and Manfred Eich
Opt. Express 17(1) 304-313 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  2. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  3. F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13(22), 8845–8854 (2005).
    [Crossref] [PubMed]
  4. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [Crossref] [PubMed]
  5. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [Crossref] [PubMed]
  6. J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
    [Crossref] [PubMed]
  7. S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, and P. C. Schindler, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. (2014).
  8. H. Gomes, P. Stallinga, M. Cölle, D. De Leeuw, and F. Biscarini, “Electrical instabilities in organic semiconductors caused by trapped supercooled water,” Appl. Phys. Lett. 88(8), 082101 (2006).
    [Crossref]
  9. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 µm,” Opt. Lett. 34(6), 839–841 (2009).
    [Crossref] [PubMed]
  10. M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
    [Crossref]
  11. D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
    [Crossref]
  12. H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).
    [Crossref]
  13. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19(9), 8855–8869 (2011).
    [Crossref] [PubMed]
  14. Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
    [Crossref]
  15. A. P. Vasudev, J.-H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
    [Crossref] [PubMed]
  16. S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO₂/ITO/Cu stack for CMOS backend integration,” Opt. Express 22(15), 17930–17947 (2014).
    [Crossref] [PubMed]
  17. H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
    [Crossref] [PubMed]
  18. A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
    [Crossref] [PubMed]
  19. K. Shi, W. Zhao, and Z. Lu, “Epsilon-near-zero-slot waveguides and their applications in ultrafast laser beam steering,” in SPIE OPTO, (International Society for Optics and Photonics, 2014), 89800L–89800L–89807.
  20. D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
    [Crossref]
  21. P. Dong, C. Xie, L. Chen, N. K. Fontaine, and Y. K. Chen, “Experimental demonstration of microring quadrature phase-shift keying modulators,” Opt. Lett. 37(7), 1178–1180 (2012).
    [Crossref] [PubMed]
  22. J. W. Elam, D. A. Baker, A. B. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors,” J. Phys. Chem. C Nanomater. Interfaces 112, 1938–1945 (2008).
  23. S. Govindarajan, T. Boscke, P. Sivasubramani, P. Kirsch, B. Lee, H.-H. Tseng, R. Jammy, U. Schroder, S. Ramanathan, and B. Gnade, “Higher permittivity rare earth doped HfO2 for sub-45-nm metal-insulator-semiconductor devices,” Appl. Phys. Lett. 91, 062906–062906–062903 (2007).
  24. H. Kim, P. C. McIntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 82(1), 106–108 (2003).
    [Crossref]
  25. TCAD, Silvaco Inc. (2014), http://www.silvaco.com .
  26. Y. Park, V. Choong, Y. Gao, B. Hsieh, and C. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
    [Crossref]
  27. S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura, “Low resistivity indium–tin oxide transparent conductive films. II. effect of sputtering voltage on electrical property of films,” J. Vac. Sci. Technol. A 8(3), 1403–1406 (1990).
    [Crossref]
  28. H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
    [Crossref]
  29. Y. J. Kim, S. B. Jin, S. I. Kim, Y. S. Choi, I. S. Choi, and J. G. Han, “Study on the electrical properties of ITO films deposited by facing target sputter deposition,” J. Phys. D Appl. Phys. 42(7), 075412 (2009).
    [Crossref]
  30. F. Neumann, Y. A. Genenko, C. Melzer, S. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B Condens. Matter 75(20), 205322 (2007).
    [Crossref]
  31. B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W.-J. Qi, C. Kang, and J. Lee, “Characteristics of TaN gate MOSFET with ultrathin hafnium oxide,” in Electron Devices Meeting,2000. IEDM'00. Technical Digest. International, (IEEE, 2000), 39–42.
  32. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref] [PubMed]
  33. C. O. M. S. O. L. Multiphysics, Version 5.0 Comsol Inc. (2014), http://www.comsol.com .
  34. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  35. C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
    [Crossref]
  36. K. Padmaraju, N. Ophir, Q. Xu, B. Schmidt, J. Shakya, S. Manipatruni, M. Lipson, and K. Bergman, “Error-free transmission of microring-modulated BPSK,” Opt. Express 20(8), 8681–8688 (2012).
    [Crossref] [PubMed]
  37. D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. J. Luff, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide,” Opt. Express 20(20), 22224–22232 (2012).
    [Crossref] [PubMed]

2015 (1)

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).
[Crossref]

2014 (2)

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO₂/ITO/Cu stack for CMOS backend integration,” Opt. Express 22(15), 17930–17947 (2014).
[Crossref] [PubMed]

2013 (2)

A. P. Vasudev, J.-H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

2012 (5)

2011 (3)

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19(9), 8855–8869 (2011).
[Crossref] [PubMed]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

2010 (3)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
[Crossref] [PubMed]

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

2009 (3)

F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 µm,” Opt. Lett. 34(6), 839–841 (2009).
[Crossref] [PubMed]

Y. J. Kim, S. B. Jin, S. I. Kim, Y. S. Choi, I. S. Choi, and J. G. Han, “Study on the electrical properties of ITO films deposited by facing target sputter deposition,” J. Phys. D Appl. Phys. 42(7), 075412 (2009).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2008 (2)

J. W. Elam, D. A. Baker, A. B. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors,” J. Phys. Chem. C Nanomater. Interfaces 112, 1938–1945 (2008).

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (3)

2006 (2)

D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
[Crossref]

H. Gomes, P. Stallinga, M. Cölle, D. De Leeuw, and F. Biscarini, “Electrical instabilities in organic semiconductors caused by trapped supercooled water,” Appl. Phys. Lett. 88(8), 082101 (2006).
[Crossref]

2005 (1)

2003 (1)

H. Kim, P. C. McIntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 82(1), 106–108 (2003).
[Crossref]

1999 (1)

H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

1996 (1)

Y. Park, V. Choong, Y. Gao, B. Hsieh, and C. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[Crossref]

1990 (1)

S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura, “Low resistivity indium–tin oxide transparent conductive films. II. effect of sputtering voltage on electrical property of films,” J. Vac. Sci. Technol. A 8(3), 1403–1406 (1990).
[Crossref]

Abb, M.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

Asghari, M.

Atwater, H. A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Bahoura, M.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Baker, D. A.

J. W. Elam, D. A. Baker, A. B. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors,” J. Phys. Chem. C Nanomater. Interfaces 112, 1938–1945 (2008).

Barnakov, Y. A.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Bergman, K.

Bijlani, B.

Biscarini, F.

H. Gomes, P. Stallinga, M. Cölle, D. De Leeuw, and F. Biscarini, “Electrical instabilities in organic semiconductors caused by trapped supercooled water,” Appl. Phys. Lett. 88(8), 082101 (2006).
[Crossref]

Brongersma, M. L.

Bruck, R.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

Burgos, S. P.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Capretti, A.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).
[Crossref]

Chander, K.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Chen, L.

Chen, X.-D.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Chen, Y. K.

Chetrit, Y.

Choi, I. S.

Y. J. Kim, S. B. Jin, S. I. Kim, Y. S. Choi, I. S. Choi, and J. G. Han, “Study on the electrical properties of ITO films deposited by facing target sputter deposition,” J. Phys. D Appl. Phys. 42(7), 075412 (2009).
[Crossref]

Choi, Y. S.

Y. J. Kim, S. B. Jin, S. I. Kim, Y. S. Choi, I. S. Choi, and J. G. Han, “Study on the electrical properties of ITO films deposited by facing target sputter deposition,” J. Phys. D Appl. Phys. 42(7), 075412 (2009).
[Crossref]

Choong, V.

Y. Park, V. Choong, Y. Gao, B. Hsieh, and C. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[Crossref]

Chrisey, D.

H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Ciftcioglu, B.

Cölle, M.

H. Gomes, P. Stallinga, M. Cölle, D. De Leeuw, and F. Biscarini, “Electrical instabilities in organic semiconductors caused by trapped supercooled water,” Appl. Phys. Lett. 88(8), 082101 (2006).
[Crossref]

Cui, J.-M.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Cunningham, J.

Dal Negro, L.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).
[Crossref]

Danz, N.

De Leeuw, D.

H. Gomes, P. Stallinga, M. Cölle, D. De Leeuw, and F. Biscarini, “Electrical instabilities in organic semiconductors caused by trapped supercooled water,” Appl. Phys. Lett. 88(8), 082101 (2006).
[Crossref]

Descrovi, E.

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Dominici, L.

Dong, C.-H.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Dong, P.

Eich, M.

Elam, J. W.

J. W. Elam, D. A. Baker, A. B. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors,” J. Phys. Chem. C Nanomater. Interfaces 112, 1938–1945 (2008).

Emerson, N.

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Feng, D.

Fong, J.

Fontaine, N. K.

Freude, W.

Gao, Y.

Y. Park, V. Choong, Y. Gao, B. Hsieh, and C. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[Crossref]

Gardes, F.

Genenko, Y. A.

F. Neumann, Y. A. Genenko, C. Melzer, S. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B Condens. Matter 75(20), 205322 (2007).
[Crossref]

Genov, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gomes, H.

H. Gomes, P. Stallinga, M. Cölle, D. De Leeuw, and F. Biscarini, “Electrical instabilities in organic semiconductors caused by trapped supercooled water,” Appl. Phys. Lett. 88(8), 082101 (2006).
[Crossref]

Gong, Q.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Green, W. M.

Gu, L.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Guo, G.-C.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Hahn, H.

Hampe, J.

Han, J. G.

Y. J. Kim, S. B. Jin, S. I. Kim, Y. S. Choi, I. S. Choi, and J. G. Han, “Study on the electrical properties of ITO films deposited by facing target sputter deposition,” J. Phys. D Appl. Phys. 42(7), 075412 (2009).
[Crossref]

Han, Z.-F.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Higuchi, Y.

S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura, “Low resistivity indium–tin oxide transparent conductive films. II. effect of sputtering voltage on electrical property of films,” J. Vac. Sci. Technol. A 8(3), 1403–1406 (1990).
[Crossref]

Horwitz, J.

H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Hsieh, B.

Y. Park, V. Choong, Y. Gao, B. Hsieh, and C. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[Crossref]

Hupp, J. T.

J. W. Elam, D. A. Baker, A. B. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors,” J. Phys. Chem. C Nanomater. Interfaces 112, 1938–1945 (2008).

Ishibashi, S.

S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura, “Low resistivity indium–tin oxide transparent conductive films. II. effect of sputtering voltage on electrical property of films,” J. Vac. Sci. Technol. A 8(3), 1403–1406 (1990).
[Crossref]

Izhaky, N.

Jacob, A.

Jen, A. K.-Y.

Jenett, M.

Jin, S. B.

Y. J. Kim, S. B. Jin, S. I. Kim, Y. S. Choi, I. S. Choi, and J. G. Han, “Study on the electrical properties of ITO films deposited by facing target sputter deposition,” J. Phys. D Appl. Phys. 42(7), 075412 (2009).
[Crossref]

Kafafi, Z.

H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Kang, J.-H.

Katoh, K.

Kikuchi, K.

Kim, H.

H. Kim, P. C. McIntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 82(1), 106–108 (2003).
[Crossref]

H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Kim, S. I.

Y. J. Kim, S. B. Jin, S. I. Kim, Y. S. Choi, I. S. Choi, and J. G. Han, “Study on the electrical properties of ITO films deposited by facing target sputter deposition,” J. Phys. D Appl. Phys. 42(7), 075412 (2009).
[Crossref]

Kim, Y. J.

Y. J. Kim, S. B. Jin, S. I. Kim, Y. S. Choi, I. S. Choi, and J. G. Han, “Study on the electrical properties of ITO films deposited by facing target sputter deposition,” J. Phys. D Appl. Phys. 42(7), 075412 (2009).
[Crossref]

Klamkin, J.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).
[Crossref]

Koos, C.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Kriesch, A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Krishnamoorthy, A. V.

Kwong, D. L.

Lee, H. W.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Leufke, P. M.

Leuthold, J.

Liang, H.

Liao, L.

Liao, S.

Lindenmann, N.

Lipson, M.

Liu, A.

Liu, X.

Livenere, J.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Lo, G. Q.

Lu, Z.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Luff, B. J.

Luo, J.

Luo, Y.

Ly-Gagnon, D.

Manipatruni, S.

Martinson, A. B.

J. W. Elam, D. A. Baker, A. B. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors,” J. Phys. Chem. C Nanomater. Interfaces 112, 1938–1945 (2008).

Mattoussi, H.

H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

McIntyre, P. C.

H. Kim, P. C. McIntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 82(1), 106–108 (2003).
[Crossref]

Melikyan, A.

Melzer, C.

F. Neumann, Y. A. Genenko, C. Melzer, S. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B Condens. Matter 75(20), 205322 (2007).
[Crossref]

Menchini, F.

Michelotti, F.

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Mills, B.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

Mundle, R.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Murata, H.

H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Muskens, O. L.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

Nakamura, K.

S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura, “Low resistivity indium–tin oxide transparent conductive films. II. effect of sputtering voltage on electrical property of films,” J. Vac. Sci. Technol. A 8(3), 1403–1406 (1990).
[Crossref]

Neumann, F.

F. Neumann, Y. A. Genenko, C. Melzer, S. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B Condens. Matter 75(20), 205322 (2007).
[Crossref]

Nguyen, H.

Noginov, M.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Ophir, N.

Ota, Y.

S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura, “Low resistivity indium–tin oxide transparent conductive films. II. effect of sputtering voltage on electrical property of films,” J. Vac. Sci. Technol. A 8(3), 1403–1406 (1990).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Padmaraju, K.

Pala, R.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Paniccia, M.

Papadakis, G.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Park, J.

Park, Y.

Y. Park, V. Choong, Y. Gao, B. Hsieh, and C. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[Crossref]

Pellin, M. J.

J. W. Elam, D. A. Baker, A. B. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors,” J. Phys. Chem. C Nanomater. Interfaces 112, 1938–1945 (2008).

Peschel, U.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Petrov, A.

Pile, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Pique, A.

H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Png, C.

Podolskiy, V.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Pradhan, A.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Prorok, S.

Reed, G.

Rooks, M. J.

Rubin, D.

Saraswat, K. C.

H. Kim, P. C. McIntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 82(1), 106–108 (2003).
[Crossref]

Schimmel, T.

Schmidt, B.

Sekaric, L.

Shafiiha, R.

Shakya, J.

Shi, K.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Stallinga, P.

H. Gomes, P. Stallinga, M. Cölle, D. De Leeuw, and F. Biscarini, “Electrical instabilities in organic semiconductors caused by trapped supercooled water,” Appl. Phys. Lett. 88(8), 082101 (2006).
[Crossref]

Sun, F.-W.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Tang, C.

Y. Park, V. Choong, Y. Gao, B. Hsieh, and C. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[Crossref]

Traviss, D.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

Tsukamoto, S.

Ulrich, S.

Vasudev, A. P.

Vincze, P.

Vlasov, Y. A.

von Seggern, H.

F. Neumann, Y. A. Genenko, C. Melzer, S. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B Condens. Matter 75(20), 205322 (2007).
[Crossref]

Walheim, S.

Wang, Y.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).
[Crossref]

Wülbern, J. H.

Xiao, Y.-F.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Xie, C.

Xu, Q.

Yampolskii, S.

F. Neumann, Y. A. Genenko, C. Melzer, S. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B Condens. Matter 75(20), 205322 (2007).
[Crossref]

Ye, J.

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhao, H.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).
[Crossref]

Zhao, W.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Zhu, G.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Zhu, S.

Zou, C.-L.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Appl. Phys. Lett. (7)

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102(12), 121112 (2013).
[Crossref]

H. Gomes, P. Stallinga, M. Cölle, D. De Leeuw, and F. Biscarini, “Electrical instabilities in organic semiconductors caused by trapped supercooled water,” Appl. Phys. Lett. 88(8), 082101 (2006).
[Crossref]

H. Kim, P. C. McIntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 82(1), 106–108 (2003).
[Crossref]

Y. Park, V. Choong, Y. Gao, B. Hsieh, and C. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996).
[Crossref]

H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).
[Crossref]

IEEE Photonics J. (1)

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. C Nanomater. Interfaces (1)

J. W. Elam, D. A. Baker, A. B. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors,” J. Phys. Chem. C Nanomater. Interfaces 112, 1938–1945 (2008).

J. Phys. D Appl. Phys. (1)

Y. J. Kim, S. B. Jin, S. I. Kim, Y. S. Choi, I. S. Choi, and J. G. Han, “Study on the electrical properties of ITO films deposited by facing target sputter deposition,” J. Phys. D Appl. Phys. 42(7), 075412 (2009).
[Crossref]

J. Vac. Sci. Technol. A (1)

S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura, “Low resistivity indium–tin oxide transparent conductive films. II. effect of sputtering voltage on electrical property of films,” J. Vac. Sci. Technol. A 8(3), 1403–1406 (1990).
[Crossref]

Nano Lett. (2)

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Opt. Express (8)

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19(9), 8855–8869 (2011).
[Crossref] [PubMed]

F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13(22), 8845–8854 (2005).
[Crossref] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[Crossref] [PubMed]

K. Padmaraju, N. Ophir, Q. Xu, B. Schmidt, J. Shakya, S. Manipatruni, M. Lipson, and K. Bergman, “Error-free transmission of microring-modulated BPSK,” Opt. Express 20(8), 8681–8688 (2012).
[Crossref] [PubMed]

D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. J. Luff, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide,” Opt. Express 20(20), 22224–22232 (2012).
[Crossref] [PubMed]

A. P. Vasudev, J.-H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO₂/ITO/Cu stack for CMOS backend integration,” Opt. Express 22(15), 17930–17947 (2014).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B Condens. Matter (1)

F. Neumann, Y. A. Genenko, C. Melzer, S. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B Condens. Matter 75(20), 205322 (2007).
[Crossref]

Phys. Rev. Lett. (1)

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Other (6)

S. Govindarajan, T. Boscke, P. Sivasubramani, P. Kirsch, B. Lee, H.-H. Tseng, R. Jammy, U. Schroder, S. Ramanathan, and B. Gnade, “Higher permittivity rare earth doped HfO2 for sub-45-nm metal-insulator-semiconductor devices,” Appl. Phys. Lett. 91, 062906–062906–062903 (2007).

TCAD, Silvaco Inc. (2014), http://www.silvaco.com .

K. Shi, W. Zhao, and Z. Lu, “Epsilon-near-zero-slot waveguides and their applications in ultrafast laser beam steering,” in SPIE OPTO, (International Society for Optics and Photonics, 2014), 89800L–89800L–89807.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, and P. C. Schindler, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. (2014).

B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W.-J. Qi, C. Kang, and J. Lee, “Characteristics of TaN gate MOSFET with ultrathin hafnium oxide,” in Electron Devices Meeting,2000. IEDM'00. Technical Digest. International, (IEEE, 2000), 39–42.

C. O. M. S. O. L. Multiphysics, Version 5.0 Comsol Inc. (2014), http://www.comsol.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The schematic diagram of the proposed electro-optical modulator. The guided TM mode input light (green arrow) is launched into the silicon waveguide. Due to the refractive index difference between the core materials (ITO and HfO2) and silicon, the electro-magnetic field can be confined in the active material (ITO). ΔV is a voltage swing applied to the device. Lmodulator is a total length of the modulator. (b) Cross-section of the silicon rib waveguide before and after the modulator section. (wSi = 300 nm, tSi_top = 320 nm, and tSi_bottom = 100 nm) (c) Cross-section of the slot waveguide modulator.

Fig. 2
Fig. 2

(a) A simplified schematic diagram for the electrical simulation. (tITO = 2tITO_acc + tITO_bulk = 10 nm, t Hf O 2 = 5 nm) (b) Average free carrier density in the accumulation (black curve) and bulk (red curve) region of the ITO layer. The accumulation length, tITO_acc, approximated by the Thomas-Fermi screening effect, is ~1 nm. The bulk length, tITO_bulk, is ~8 nm.

Fig. 3
Fig. 3

(a) The real part of the ITO permittivity as a function of the operational frequency in the ITO accumulation region. The inset shows the imaginary part of the ITO permittivity. The horizontal dashed line indicates an ENZ regime. The arrows represent a direction in which a voltage bias increases. (b) Refractive index of the ITO’s accumulation layer for the 5 and 7 V bias. The two vertical dashed lines indicate the ENZ frequencies at each voltage.

Fig. 4
Fig. 4

Electric field intensity profiles at the wavelength of 1550 nm (xy plane), and the absolute values of Ey along the white lines (A-A’ and B-B’). (a) A TM mode profile at the “normal” state with 0 V bias. (b) A TM mode profile at the “ENZ” state with 5 V bias. Dashed rectangles illustrate the magnified views of the electric field intensity profiles near the core of the waveguide modulator. (c) The propagating electric field profiles of the “normal” (left column) and “ENZ” (right column) state obtained from 3D FEM simulations.

Fig. 5
Fig. 5

(a) A real and (b) imaginary part of the effective mode index for the TM mode with respect to the operational frequency. An ENZ frequency for each voltage bias is indicated by the dashed vertical lines with the corresponding color. (c) Mode confinement factor of the ITO’s active layer with respect to the operational frequency for various bias voltages.

Fig. 6
Fig. 6

Dependence of a phase constant (β(V, f)) and propagation loss on the operational frequency. The dc voltage bias, Vdc, is fixed to 6 V. The graphs show phase modulation operation when the voltage swing ΔV is (a) 6 V, (b) 4 V, (c) 2 V, respectively. Dashed red and black vertical lines represent an ENZ frequency for the corresponding input voltage. The black dots indicate the crossover points where the propagation losses become equal for two different input voltages.

Fig. 7
Fig. 7

Simulation analysis of the modulation performance. (a) Mode coupling efficiency between a silicon rib waveguide and modulator depending on the voltage biases at 1550 nm. The inset figures show 3D propagation profiles for a ‘normal’ and ‘ENZ’ state in the modulator (a silicon_waveguide/ITO_modulator/silicon_waveguide structure). (b) Dependence of energy consumption per bit and propagation loss as a function of the voltage swing for π radian phase shift (Lmodulator = Lπ). The dc voltage bias is fixed at Vdc = 6 V. (c) Transient analysis of the average electron density in the ITO accumulation region. This transient graph represents a case with a voltage swing of ΔV = 2 V and a dc voltage of Vdc = 6 V.

Tables (1)

Tables Icon

Table 1 Simulation parameters for the electrical properties of an indium-tin-oxide thin film

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t ITO_acc = λ TF = ( ε ITO ε 0 h 2 4 π 2 m eff e 2 ) 1/2 ( π 4 3 N 0 ) 1/6 ,
W(r)= 1 2 Re{ d[ωε(r)] dω } | E(r) | 2 + 1 2 μ 0 | H(r) | 2 ,
γ= | E waveguide (x,y) E modulator * (x,y)dxdy | 2 | E waveguide (x,y) | 2 dxdy | E modulator (x,y) | 2 dxdy ,

Metrics