Abstract

We find conditions for suppression of higher-order core modes in chalcogenide negative curvature fibers with an air core. An avoided crossing between the higher-order core modes and the fundamental modes in the tubes surrounding the core can be used to resonantly couple these modes, so that the higher-order core modes become lossy. In the parameter range of the avoided crossing, the higher-order core modes become hybrid modes that reside partly in the core and partly in the tubes. The loss ratio of the higher-order core modes to the fundamental core mode can be more than 50, while the leakage loss of the fundamental core mode is under 0.4 dB/m. We show that this loss ratio is almost unchanged when the core diameter changes and so will remain large in the presence of fluctuations that are due to the fiber drawing process.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers

Chengli Wei, Curtis R. Menyuk, and Jonathan Hu
Opt. Express 24(11) 12228-12239 (2016)

Negative curvature fibers

Chengli Wei, R. Joseph Weiblen, Curtis R. Menyuk, and Jonathan Hu
Adv. Opt. Photon. 9(3) 504-561 (2017)

Polarization-filtering and polarization-maintaining low-loss negative curvature fibers

Chengli Wei, Curtis R. Menyuk, and Jonathan Hu
Opt. Express 26(8) 9528-9540 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25(2), 96–98 (2000).
    [Crossref]
  2. G. Pearce, J. Pottage, D. Bird, P. Roberts, J. Knight, and P. Russell, “Hollow-core PCF for guidance in the mid to far infra-red,” Opt. Express 13(18), 6937–6946 (2005).
    [Crossref] [PubMed]
  3. J. Hu and C. R. Menyuk, “Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses,” Opt. Express 15(2), 339–349 (2007).
    [Crossref] [PubMed]
  4. P. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  5. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
    [Crossref] [PubMed]
  6. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
    [Crossref] [PubMed]
  7. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 μ m spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  8. W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
    [Crossref] [PubMed]
  9. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
    [Crossref] [PubMed]
  10. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  11. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
    [Crossref] [PubMed]
  12. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
    [Crossref] [PubMed]
  13. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref] [PubMed]
  14. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
    [Crossref]
  15. V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).
  16. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref] [PubMed]
  17. L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regenerator in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
    [Crossref] [PubMed]
  18. J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
    [Crossref]
  19. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
    [Crossref]
  20. J. M. Fini, “Aircore microstructure fibers with suppressed higher-order modes,” Opt. Express 14(23), 11354–11361 (2006).
    [Crossref] [PubMed]
  21. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14(16), 7342–7352 (2006).
    [Crossref] [PubMed]
  22. J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(15), 6233–6242 (2013).
    [Crossref] [PubMed]
  23. T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19(3), 1713–1727 (2011).
    [Crossref] [PubMed]
  24. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19(14), 13578–13589 (2011).
    [Crossref] [PubMed]
  25. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004).
    [Crossref] [PubMed]
  26. K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11(23), 3100–3109 (2003).
    [Crossref] [PubMed]
  27. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19(10), 2322–2330 (2002).
    [Crossref]
  28. G. Ren, Z. Wang, S. Lou, and S. Jian, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11(11), 1310–1321 (2003).
    [Crossref]
  29. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of a 3–5 μm source that is created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35(17), 2907–2909 (2010).
    [Crossref] [PubMed]
  30. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref]
  31. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [Crossref] [PubMed]
  32. G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express 14(12), 5682–5687 (2006).
    [Crossref] [PubMed]
  33. F. Gérôme, R. Jamier, J. L. Auguste, G. Humbert, and J. M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
    [Crossref] [PubMed]
  34. P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik 113(111), 481–488 (2002).
    [Crossref]
  35. M. Hautakorpi and M. Kaivola, “Modal analysis of M-type-dielectric-profile optical fibers in the weakly guiding approximation,” J. Opt. Soc. Am. A 22(6), 1163–1169 (2005).
    [Crossref]
  36. W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
    [Crossref] [PubMed]

2014 (5)

2013 (5)

2012 (1)

2011 (4)

2010 (3)

2009 (1)

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

2007 (1)

2006 (4)

2005 (3)

2004 (1)

2003 (3)

2002 (3)

2000 (1)

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Abeeluck, A. K.

Aggarwal, I. D.

Alagashev, G. K.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

Alharbi, M.

Allan, D. C.

Astapovich, M. S.

Auguste, J. L.

Barkou, S. E.

Belardi, W.

Benabid, F.

Bird, D.

Biriukov, A. S.

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Bjarklev, A.

Blondy, J. M.

Borrelli, N. F.

Botten, L. C.

Boyer, P.

Bradley, T.

Brandon Shaw, L.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

Broeng, J.

J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25(2), 96–98 (2000).
[Crossref]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Choudhury, P. K.

P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik 113(111), 481–488 (2002).
[Crossref]

Churbanov, M. F.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

de Sterke, C. M.

Debord, B.

Desantolo, A.

Dianov, E. M.

DiMarcello, F. V.

Ding, W.

Dunn, S. C.

Eggleton, B. J.

Fini, J. M.

Florous, N. J.

Fourcade-Dutin, C.

Fu, L. B.

Gérôme, F.

Hand, D. P.

Hautakorpi, M.

Headley, C.

Hu, J.

Humbert, G.

Jamier, R.

Jansen, F.

Jauregui, C.

Jaworski, P.

Jian, S.

Kaivola, M.

Knight, J.

Knight, J. C.

Koch, K. W.

Kolyadin, A. N.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

Koshiba, M.

Kosolapov, A. F.

Kotereva, T. V.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

Kuhlmey, B. T.

Limpert, J.

Litchinitser, N. M.

Lou, S.

Maier, R. R. J.

Mangan, B.

Maystre, D.

McPhedran, R. C.

Meng, L.

Menyuk, C. R.

Mishinov, S. V.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

Monberg, E. M.

Moss, D. J.

Murao, T.

Nicholson, J. W.

Pearce, G.

Plotnichenko, V. G.

Poletti, F.

Pottage, J.

Pryamikov, A. D.

Ren, G.

Renversez, G.

Roberts, P.

Rochette, M.

Russell, P.

Russell, P. S. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Sagrini, A.

Saitoh, K.

Sanghera, J. S.

Semjonov, S. L.

Setti, V.

Shaw, L. B.

Shephard, J. D.

Shiryaev, V. S.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

Smith, C. M.

Snopatin, G. E.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

Søndergaard, T.

Stutzki, F.

Ta’eed, V. G.

Tünnermann, A.

Usner, B.

Vincetti, L.

Wadsworth, W. J.

Wang, Y.

Wang, Y. Y.

Wang, Z.

West, J. A.

White, T. P.

Windeler, R. S.

Yoshino, T.

P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik 113(111), 481–488 (2002).
[Crossref]

Yu, F.

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. M. (1)

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. M. 16(9–10), 1020–1025 (2014).

Opt. Express (24)

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regenerator in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref]

G. Ren, Z. Wang, S. Lou, and S. Jian, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11(11), 1310–1321 (2003).
[Crossref]

W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
[Crossref] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[Crossref] [PubMed]

G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express 14(12), 5682–5687 (2006).
[Crossref] [PubMed]

G. Pearce, J. Pottage, D. Bird, P. Roberts, J. Knight, and P. Russell, “Hollow-core PCF for guidance in the mid to far infra-red,” Opt. Express 13(18), 6937–6946 (2005).
[Crossref] [PubMed]

J. Hu and C. R. Menyuk, “Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses,” Opt. Express 15(2), 339–349 (2007).
[Crossref] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 μ m spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref]

J. M. Fini, “Aircore microstructure fibers with suppressed higher-order modes,” Opt. Express 14(23), 11354–11361 (2006).
[Crossref] [PubMed]

K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14(16), 7342–7352 (2006).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(15), 6233–6242 (2013).
[Crossref] [PubMed]

T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19(3), 1713–1727 (2011).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19(14), 13578–13589 (2011).
[Crossref] [PubMed]

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004).
[Crossref] [PubMed]

K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11(23), 3100–3109 (2003).
[Crossref] [PubMed]

Opt. Lett. (5)

Optik (1)

P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik 113(111), 481–488 (2002).
[Crossref]

Science (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cross-section of the chalcogenide negative curvature fiber.
Fig. 2
Fig. 2 Real part of (a) the effective index and (b) the leakage loss of the fundamental HE11 core mode, the TE01 core mode, the TM01 core mode, and the two degenerate HE21 core modes in the chalcogenide negative curvature fiber. The blue dashed curves correspond to the tube modes. (c) Loss ratio of the TE01core mode to the fundamental HE11 core mode.
Fig. 3
Fig. 3 (a) Real part of the effective index of the HE11 core mode, the TE01 core mode and corresponding tube mode that couples to the TE01 core mode. The open circles represent the real part of the effective index of the corresponding modes using the annular core fiber model. (b) Effective index difference between the TE01 core mode and tube mode that is coupled to the TE01 core mode.
Fig. 4
Fig. 4 Mode fields of the HE11 core mode, the TE01 core mode, and the tube mode that couples with the TE01 core mode at tube thicknesses of 0.32 μm, 0.42 μm and 0.44 μm, respectively, corresponding to the labeled crosses in Fig. 3(a) and Fig. 5. The contour plots represent the normalized electric field intensity and the arrows represent the amplitude and direction of the transverse electric field.
Fig. 5
Fig. 5 (a) The power ratio in the core and the power ratio in the tubes for the TE01 core mode. (b) The power ratio in the core and the power ratio in the tubes for the corresponding tube mode that couples with the TE01 core mode.
Fig. 6
Fig. 6 Annular core fibers are used to study the modes in the tube and the core of a negative curvature fiber.
Fig. 7
Fig. 7 Loss of the fundamental core mode and loss ratio of the lowest-loss, higher-order (TE01) core mode to the fundamental core mode as a function of core diameter. The tube thickness is fixed at 0.42 μm.

Metrics