Abstract

An anti-symmetrically sampled Bragg grating (ASBG) with single mode waveguide is proposed and investigated for the first time. Based on anti-symmetric periodic structure, the coupling coefficient between the forward and backward guided modes becomes zero, thus nearly no light is reflected. Besides, the equivalent tilted grating effect with radiation mode coupling is found. If another anti-symmetrically sampling structure is imposed to form a sampled grating, the 0th sub-grating can be avoided, while the ± 1st sub-gratings are adjusted as uniform gratings with normal performances. This will be very benefit for some special applications such as distributed feedback (DFB) lasers based on Reconstruction-equivalent-chirp (REC) technique where 0th order resonance can be avoided. In addition, error analysis for the proposed structure is also performed for practical applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On-chip optical narrowband reflector based on anti-symmetric Bragg grating

Yitao Wu, Yuechun Shi, Yong Zhao, Lianyan Li, Pinghui Wu, Pan Dai, Tao Fang, and Xiangfei Chen
Opt. Express 27(26) 38541-38552 (2019)

Study of multiwavelength DFB semiconductor laser array with asymmetric structures based on sampling technique

Yuechun Shi, Baoli Cao, Lianyan Li, Song Tang, Junshou Zheng, Peng Zhang, Ting Chen, and Shengchun Liu
Appl. Opt. 53(29) 6804-6811 (2014)

Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings

Jose M. Castro, David F. Geraghty, Seppo Honkanen, Christoph M. Greiner, Dmitri Iazikov, and Thomas W. Mossberg
Opt. Express 13(11) 4180-4184 (2005)

References

  • View by:
  • |
  • |
  • |

  1. L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
    [Crossref] [PubMed]
  2. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating,” Appl. Opt. 45(6), 1236–1243 (2006).
    [Crossref] [PubMed]
  3. J. E. Roman and K. A. Winick, “Waveguide grating filters for dispersion compensation and pulse compression,” IEEE J. Quantum Electron. 29(3), 975–982 (1993).
    [Crossref]
  4. M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Opt. Express 21(21), 25120–25147 (2013).
    [Crossref] [PubMed]
  5. V. Kochergin, I. Avrutsky, and Y. Zhao, “High sensitivity waveguide grating sensor based on radiative losses,” Biosens. Bioelectron. 15(5-6), 283–289 (2000).
    [Crossref] [PubMed]
  6. S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
    [Crossref]
  7. J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express 17(7), 5240–5245 (2009).
    [Crossref] [PubMed]
  8. Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express 20(16), 17374–17379 (2012).
    [Crossref] [PubMed]
  9. Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Li, S. Tang, Y. Zhou, J. Li, and X. Chen, “Study of the Multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirp technique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
    [Crossref]
  10. T. Kjellberg and R. Schatz, “The effect of stitching errors on the spectral characteristics of DFB lasers fabricated using electron beam lithography,” J. Lightwave Technol. 10(9), 1256–1266 (1992).
    [Crossref]
  11. Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express 15(5), 2348–2353 (2007).
    [Crossref] [PubMed]
  12. S. Bao, Y. Xi, S. Zhao, and X. Li, “Sampled grating DFB laser array by periodic injection blocking,” IEEE J. Sel. Top. Quantum Electron. 19, 1–8 (2013).
  13. J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett. 21(21), 1639–1641 (2009).
    [Crossref]
  14. Y. Shi, J. Zheng, N. Jiang, L. Li, Y. Zhang, B. Qiu, and X. Chen, “Improved single mode property of DFB semiconductor laser based on sampling technique using chirp compensation,” IEEE Photonics J. 7(1), 1500310 (2015).
    [Crossref]
  15. Y. Shi, Y. Zhou, S. Li, R. Guo, L. Lu, Y. Feng, and X. Chen, “An anti-symmetric-sample grating structure for improving the reconstruction-equivalent-chirp technology,” IEEE Photon. Technol. Lett. 23(18), 1337–1339 (2011).
    [Crossref]
  16. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  17. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
    [Crossref]
  18. Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristic and applications of 45° tilted fiber grating,” IEEE Photon. Technol. Lett. 29, 2715–2724 (2011).
  19. H. J. Pahk, D. S. Lee, and J. H. Park, “Ultra precision poisioning system for servo motor-piezo actuator using the dual servo loop and digital filer implementation,” Int. J. Mach. Tools Manuf. 41(1), 51–63 (2001).
    [Crossref]
  20. J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina, “Narrow linewidth laterally-coupled 1.55 µm DFB lasers fabricated using nanoimprint lithography,” Electron. Lett. 47(6), 400–401 (2011).
    [Crossref]

2015 (1)

Y. Shi, J. Zheng, N. Jiang, L. Li, Y. Zhang, B. Qiu, and X. Chen, “Improved single mode property of DFB semiconductor laser based on sampling technique using chirp compensation,” IEEE Photonics J. 7(1), 1500310 (2015).
[Crossref]

2013 (3)

2012 (1)

2011 (4)

Y. Shi, Y. Zhou, S. Li, R. Guo, L. Lu, Y. Feng, and X. Chen, “An anti-symmetric-sample grating structure for improving the reconstruction-equivalent-chirp technology,” IEEE Photon. Technol. Lett. 23(18), 1337–1339 (2011).
[Crossref]

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristic and applications of 45° tilted fiber grating,” IEEE Photon. Technol. Lett. 29, 2715–2724 (2011).

J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina, “Narrow linewidth laterally-coupled 1.55 µm DFB lasers fabricated using nanoimprint lithography,” Electron. Lett. 47(6), 400–401 (2011).
[Crossref]

2009 (2)

J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express 17(7), 5240–5245 (2009).
[Crossref] [PubMed]

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett. 21(21), 1639–1641 (2009).
[Crossref]

2007 (1)

2006 (1)

2003 (1)

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

2001 (1)

H. J. Pahk, D. S. Lee, and J. H. Park, “Ultra precision poisioning system for servo motor-piezo actuator using the dual servo loop and digital filer implementation,” Int. J. Mach. Tools Manuf. 41(1), 51–63 (2001).
[Crossref]

2000 (1)

V. Kochergin, I. Avrutsky, and Y. Zhao, “High sensitivity waveguide grating sensor based on radiative losses,” Biosens. Bioelectron. 15(5-6), 283–289 (2000).
[Crossref] [PubMed]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1996 (1)

1993 (1)

J. E. Roman and K. A. Winick, “Waveguide grating filters for dispersion compensation and pulse compression,” IEEE J. Quantum Electron. 29(3), 975–982 (1993).
[Crossref]

1992 (1)

T. Kjellberg and R. Schatz, “The effect of stitching errors on the spectral characteristics of DFB lasers fabricated using electron beam lithography,” J. Lightwave Technol. 10(9), 1256–1266 (1992).
[Crossref]

Aho, A.

J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina, “Narrow linewidth laterally-coupled 1.55 µm DFB lasers fabricated using nanoimprint lithography,” Electron. Lett. 47(6), 400–401 (2011).
[Crossref]

Avrutsky, I.

V. Kochergin, I. Avrutsky, and Y. Zhao, “High sensitivity waveguide grating sensor based on radiative losses,” Biosens. Bioelectron. 15(5-6), 283–289 (2000).
[Crossref] [PubMed]

Ayache, M.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Azaña, J.

Bao, S.

S. Bao, Y. Xi, S. Zhao, and X. Li, “Sampled grating DFB laser array by periodic injection blocking,” IEEE J. Sel. Top. Quantum Electron. 19, 1–8 (2013).

Bastard, L.

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

Blaize, S.

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

Broquin, J. E.

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

Burla, M.

Cassagnetes, C.

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

Castro, J. M.

Chen, X.

Y. Shi, J. Zheng, N. Jiang, L. Li, Y. Zhang, B. Qiu, and X. Chen, “Improved single mode property of DFB semiconductor laser based on sampling technique using chirp compensation,” IEEE Photonics J. 7(1), 1500310 (2015).
[Crossref]

Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Li, S. Tang, Y. Zhou, J. Li, and X. Chen, “Study of the Multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirp technique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
[Crossref]

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express 20(16), 17374–17379 (2012).
[Crossref] [PubMed]

Y. Shi, Y. Zhou, S. Li, R. Guo, L. Lu, Y. Feng, and X. Chen, “An anti-symmetric-sample grating structure for improving the reconstruction-equivalent-chirp technology,” IEEE Photon. Technol. Lett. 23(18), 1337–1339 (2011).
[Crossref]

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristic and applications of 45° tilted fiber grating,” IEEE Photon. Technol. Lett. 29, 2715–2724 (2011).

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett. 21(21), 1639–1641 (2009).
[Crossref]

J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express 17(7), 5240–5245 (2009).
[Crossref] [PubMed]

Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express 15(5), 2348–2353 (2007).
[Crossref] [PubMed]

Chen, Y. F.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Cheng, Y.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett. 21(21), 1639–1641 (2009).
[Crossref]

Chrostowski, L.

Cortés, L. R.

Dai, Y.

Dumitrescu, M.

J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina, “Narrow linewidth laterally-coupled 1.55 µm DFB lasers fabricated using nanoimprint lithography,” Electron. Lett. 47(6), 400–401 (2011).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
[Crossref]

Fainman, Y.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Feng, L.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Feng, Y.

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express 20(16), 17374–17379 (2012).
[Crossref] [PubMed]

Y. Shi, Y. Zhou, S. Li, R. Guo, L. Lu, Y. Feng, and X. Chen, “An anti-symmetric-sample grating structure for improving the reconstruction-equivalent-chirp technology,” IEEE Photon. Technol. Lett. 23(18), 1337–1339 (2011).
[Crossref]

Geraghty, D. F.

Greiner, C. M.

Guina, M.

J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina, “Narrow linewidth laterally-coupled 1.55 µm DFB lasers fabricated using nanoimprint lithography,” Electron. Lett. 47(6), 400–401 (2011).
[Crossref]

Guo, R.

Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Li, S. Tang, Y. Zhou, J. Li, and X. Chen, “Study of the Multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirp technique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
[Crossref]

Y. Shi, Y. Zhou, S. Li, R. Guo, L. Lu, Y. Feng, and X. Chen, “An anti-symmetric-sample grating structure for improving the reconstruction-equivalent-chirp technology,” IEEE Photon. Technol. Lett. 23(18), 1337–1339 (2011).
[Crossref]

Honkanen, S.

Huang, J.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Iazikov, D.

Jia, L.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett. 21(21), 1639–1641 (2009).
[Crossref]

Jiang, N.

Y. Shi, J. Zheng, N. Jiang, L. Li, Y. Zhang, B. Qiu, and X. Chen, “Improved single mode property of DFB semiconductor laser based on sampling technique using chirp compensation,” IEEE Photonics J. 7(1), 1500310 (2015).
[Crossref]

Karinen, J.

J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina, “Narrow linewidth laterally-coupled 1.55 µm DFB lasers fabricated using nanoimprint lithography,” Electron. Lett. 47(6), 400–401 (2011).
[Crossref]

Kjellberg, T.

T. Kjellberg and R. Schatz, “The effect of stitching errors on the spectral characteristics of DFB lasers fabricated using electron beam lithography,” J. Lightwave Technol. 10(9), 1256–1266 (1992).
[Crossref]

Kochergin, V.

V. Kochergin, I. Avrutsky, and Y. Zhao, “High sensitivity waveguide grating sensor based on radiative losses,” Biosens. Bioelectron. 15(5-6), 283–289 (2000).
[Crossref] [PubMed]

Lee, D. S.

H. J. Pahk, D. S. Lee, and J. H. Park, “Ultra precision poisioning system for servo motor-piezo actuator using the dual servo loop and digital filer implementation,” Int. J. Mach. Tools Manuf. 41(1), 51–63 (2001).
[Crossref]

Li, J.

Li, L.

Li, M.

Li, S.

Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Li, S. Tang, Y. Zhou, J. Li, and X. Chen, “Study of the Multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirp technique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
[Crossref]

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express 20(16), 17374–17379 (2012).
[Crossref] [PubMed]

Y. Shi, Y. Zhou, S. Li, R. Guo, L. Lu, Y. Feng, and X. Chen, “An anti-symmetric-sample grating structure for improving the reconstruction-equivalent-chirp technology,” IEEE Photon. Technol. Lett. 23(18), 1337–1339 (2011).
[Crossref]

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett. 21(21), 1639–1641 (2009).
[Crossref]

Li, W.

Li, X.

S. Bao, Y. Xi, S. Zhao, and X. Li, “Sampled grating DFB laser array by periodic injection blocking,” IEEE J. Sel. Top. Quantum Electron. 19, 1–8 (2013).

Liu, R.

Liu, S.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett. 21(21), 1639–1641 (2009).
[Crossref]

Lu, L.

Y. Shi, Y. Zhou, S. Li, R. Guo, L. Lu, Y. Feng, and X. Chen, “An anti-symmetric-sample grating structure for improving the reconstruction-equivalent-chirp technology,” IEEE Photon. Technol. Lett. 23(18), 1337–1339 (2011).
[Crossref]

Lu, M. H.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Lu, Y.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett. 21(21), 1639–1641 (2009).
[Crossref]

J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express 17(7), 5240–5245 (2009).
[Crossref] [PubMed]

Melanen, P.

J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina, “Narrow linewidth laterally-coupled 1.55 µm DFB lasers fabricated using nanoimprint lithography,” Electron. Lett. 47(6), 400–401 (2011).
[Crossref]

Mossberg, T. W.

Mou, C.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristic and applications of 45° tilted fiber grating,” IEEE Photon. Technol. Lett. 29, 2715–2724 (2011).

Pahk, H. J.

H. J. Pahk, D. S. Lee, and J. H. Park, “Ultra precision poisioning system for servo motor-piezo actuator using the dual servo loop and digital filer implementation,” Int. J. Mach. Tools Manuf. 41(1), 51–63 (2001).
[Crossref]

Park, J. H.

H. J. Pahk, D. S. Lee, and J. H. Park, “Ultra precision poisioning system for servo motor-piezo actuator using the dual servo loop and digital filer implementation,” Int. J. Mach. Tools Manuf. 41(1), 51–63 (2001).
[Crossref]

Qiu, B.

Y. Shi, J. Zheng, N. Jiang, L. Li, Y. Zhang, B. Qiu, and X. Chen, “Improved single mode property of DFB semiconductor laser based on sampling technique using chirp compensation,” IEEE Photonics J. 7(1), 1500310 (2015).
[Crossref]

Roman, J. E.

J. E. Roman and K. A. Winick, “Waveguide grating filters for dispersion compensation and pulse compression,” IEEE J. Quantum Electron. 29(3), 975–982 (1993).
[Crossref]

Schatz, R.

T. Kjellberg and R. Schatz, “The effect of stitching errors on the spectral characteristics of DFB lasers fabricated using electron beam lithography,” J. Lightwave Technol. 10(9), 1256–1266 (1992).
[Crossref]

Scherer, A.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Shi, Y.

Sipe, J. E.

Tang, S.

Telkkälä, J.

J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina, “Narrow linewidth laterally-coupled 1.55 µm DFB lasers fabricated using nanoimprint lithography,” Electron. Lett. 47(6), 400–401 (2011).
[Crossref]

Viheriälä, J.

J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina, “Narrow linewidth laterally-coupled 1.55 µm DFB lasers fabricated using nanoimprint lithography,” Electron. Lett. 47(6), 400–401 (2011).
[Crossref]

Wang, H.

Wang, X.

Winick, K. A.

J. E. Roman and K. A. Winick, “Waveguide grating filters for dispersion compensation and pulse compression,” IEEE J. Quantum Electron. 29(3), 975–982 (1993).
[Crossref]

Xi, Y.

S. Bao, Y. Xi, S. Zhao, and X. Li, “Sampled grating DFB laser array by periodic injection blocking,” IEEE J. Sel. Top. Quantum Electron. 19, 1–8 (2013).

Xu, Y. L.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Yan, Z.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristic and applications of 45° tilted fiber grating,” IEEE Photon. Technol. Lett. 29, 2715–2724 (2011).

Yin, Z.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett. 21(21), 1639–1641 (2009).
[Crossref]

J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express 17(7), 5240–5245 (2009).
[Crossref] [PubMed]

Zhang, L.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristic and applications of 45° tilted fiber grating,” IEEE Photon. Technol. Lett. 29, 2715–2724 (2011).

Zhang, T.

Zhang, Y.

Y. Shi, J. Zheng, N. Jiang, L. Li, Y. Zhang, B. Qiu, and X. Chen, “Improved single mode property of DFB semiconductor laser based on sampling technique using chirp compensation,” IEEE Photonics J. 7(1), 1500310 (2015).
[Crossref]

Zhao, S.

S. Bao, Y. Xi, S. Zhao, and X. Li, “Sampled grating DFB laser array by periodic injection blocking,” IEEE J. Sel. Top. Quantum Electron. 19, 1–8 (2013).

Zhao, Y.

V. Kochergin, I. Avrutsky, and Y. Zhao, “High sensitivity waveguide grating sensor based on radiative losses,” Biosens. Bioelectron. 15(5-6), 283–289 (2000).
[Crossref] [PubMed]

Zheng, J.

Y. Shi, J. Zheng, N. Jiang, L. Li, Y. Zhang, B. Qiu, and X. Chen, “Improved single mode property of DFB semiconductor laser based on sampling technique using chirp compensation,” IEEE Photonics J. 7(1), 1500310 (2015).
[Crossref]

Zhou, K.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristic and applications of 45° tilted fiber grating,” IEEE Photon. Technol. Lett. 29, 2715–2724 (2011).

Zhou, Y.

Zhu, H.

Appl. Opt. (1)

Biosens. Bioelectron. (1)

V. Kochergin, I. Avrutsky, and Y. Zhao, “High sensitivity waveguide grating sensor based on radiative losses,” Biosens. Bioelectron. 15(5-6), 283–289 (2000).
[Crossref] [PubMed]

Electron. Lett. (1)

J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina, “Narrow linewidth laterally-coupled 1.55 µm DFB lasers fabricated using nanoimprint lithography,” Electron. Lett. 47(6), 400–401 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

J. E. Roman and K. A. Winick, “Waveguide grating filters for dispersion compensation and pulse compression,” IEEE J. Quantum Electron. 29(3), 975–982 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Bao, Y. Xi, S. Zhao, and X. Li, “Sampled grating DFB laser array by periodic injection blocking,” IEEE J. Sel. Top. Quantum Electron. 19, 1–8 (2013).

IEEE Photon. Technol. Lett. (4)

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett. 21(21), 1639–1641 (2009).
[Crossref]

Y. Shi, Y. Zhou, S. Li, R. Guo, L. Lu, Y. Feng, and X. Chen, “An anti-symmetric-sample grating structure for improving the reconstruction-equivalent-chirp technology,” IEEE Photon. Technol. Lett. 23(18), 1337–1339 (2011).
[Crossref]

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristic and applications of 45° tilted fiber grating,” IEEE Photon. Technol. Lett. 29, 2715–2724 (2011).

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

IEEE Photonics J. (1)

Y. Shi, J. Zheng, N. Jiang, L. Li, Y. Zhang, B. Qiu, and X. Chen, “Improved single mode property of DFB semiconductor laser based on sampling technique using chirp compensation,” IEEE Photonics J. 7(1), 1500310 (2015).
[Crossref]

Int. J. Mach. Tools Manuf. (1)

H. J. Pahk, D. S. Lee, and J. H. Park, “Ultra precision poisioning system for servo motor-piezo actuator using the dual servo loop and digital filer implementation,” Int. J. Mach. Tools Manuf. 41(1), 51–63 (2001).
[Crossref]

J. Lightwave Technol. (3)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Li, S. Tang, Y. Zhou, J. Li, and X. Chen, “Study of the Multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirp technique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
[Crossref]

T. Kjellberg and R. Schatz, “The effect of stitching errors on the spectral characteristics of DFB lasers fabricated using electron beam lithography,” J. Lightwave Technol. 10(9), 1256–1266 (1992).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (4)

Science (1)

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the proposed ASBG structure with (a) anti-symmetric sampling pattern with π-EPS, (b) APS seed grating and (c) corresponding sampled grating.
Fig. 2
Fig. 2 Schematic of the refractive index of the (a) + 1st sub-grating (b) 0th sub-grating and (c) −1st sub-grating.
Fig. 3
Fig. 3 The calculated transmission and reflection spectra of (a) the designed ASBG and (b) the normally sampled grating with π-EPS. The inserted figures are the corresponding reflection spectra.
Fig. 4
Fig. 4 (a) The schematic of APS seed grating related to centered lattice with basic vectors of a 1   ,   a 2 and corresponding reciprocal lattice vectors where e x , e z are two axises and (b) wavelength of radiation mode coupling versus different waveguide widths for APS grating and tilted grating respectively. The inserted figure is their transmission spectra with waveguide width of 1.0 μm.
Fig. 5
Fig. 5 The calculated curves of normalized reflection with (a) ideal anti-symmetric sampling pattern imposed on seed grating with different lateral errors and (b) ideal anti-symmetric sampling pattern imposed on seed grating with mixed up interface errors, where d represents the magnitude of the two errors. (c) The suppression factor (S) versus the initial phase difference in the seed grating along longitudinal direction.
Fig. 6
Fig. 6 The normalized reflection NR with (a) different overlay alignment errors for sampled grating (Waveguide width are 1.0 μm and 2.0 μm respectively) and (b) different ridge alignment error with waveguide width of 1.0 μm and 2.0 μm respectively, where both d represent the size of the error.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Simulation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n s ( z ) = { 1 / 2 Δ n m F m exp ( j 2 π z Λ 0 + j 2 π m z P ) + c . c .1 x u p p e r sec t i o n 1 / 2 Δ n m F m exp ( j 2 π z Λ 0 + j 2 π m z P ) exp ( j 2 π Δ Λ Λ 0 ) exp ( j 2 π m Δ P P ) + c . c .2 x l o w e r sec t i o n
R a b = | r a b | 2 = [ tan h ( K a c a b L ) ] 2
Κ a c a b = π λ Δ n e a ( x , y ) ζ ( x , y ) e b ( x , y ) d x d y [ e a ( x , y ) e a ( x , y ) d x d y e b ( x , y ) e b ( x , y ) d x d y ] 1 2
ζ ( x , y ) = s i g n ( x ) F ( y )
ζ ( x , y ) | e a = b ( x , y ) | 2 d x d y = 0

Metrics