Abstract

We report the development of a fiber-integrated picosecond source at 560 nm by second harmonic generation of a Raman fiber laser. A picosecond ytterbium master oscillator power fiber amplifier is used to pulse-pump a Raman amplifier, which is seeded by a continuous wave distributed feedback laser diode operating at 1120 nm. The pulse train generated at 1120 nm is frequency-doubled in a fiber-coupled periodically-poled lithium niobate crystal module, producing 450 mW of average power at 560 nm with a pulse duration of 150 ps at a repetition rate of 47.5 MHz. The near diffraction-limited (M2 = 1.02) collimated output beam is ideal for super-resolution microscopy applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Duration-tunable picosecond source at 560  nm with watt-level average power

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor
Opt. Lett. 40(13) 3085-3088 (2015)

60-W green output by frequency doubling of a polarized Yb-doped fiber laser

Anping Liu, Marc A. Norsen, and Roy D. Mead
Opt. Lett. 30(1) 67-69 (2005)

Nd:YVO4 amplifier for ultrafast low-power lasers

Antonio Agnesi, Luca Carrà, Riccardo Piccoli, Federico Pirzio, and Giancarlo Reali
Opt. Lett. 37(17) 3612-3614 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
    [Crossref] [PubMed]
  2. W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
    [Crossref] [PubMed]
  3. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, “Efficient frequency doubling of a femtosecond fiber laser,” Opt. Lett. 21(21), 1759–1761 (1996).
    [Crossref] [PubMed]
  4. S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
    [Crossref]
  5. J. Wang, S. Cui, L. Si, J. Chen, and Y. Feng, “All-fiber single-mode actively Q-switched laser at 1120 nm,” Opt. Express 21(1), 289–294 (2013).
    [Crossref] [PubMed]
  6. H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
    [Crossref]
  7. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  8. M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
    [Crossref]
  9. D. J. J. Hu, R. T. Murray, T. Legg, T. H. Runcorn, M. Zhang, R. I. Woodward, J. L. Lim, Y. Wang, F. Luan, B. Gu, P. P. Shum, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Fiber-integrated 780 nm source for visible parametric generation,” Opt. Express 22(24), 29726–29732 (2014).
    [Crossref]
  10. G. D. Boyd and D. A. Kleinman., “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  11. M. Leutenegger, C. Eggeling, and S. W. Hell., “Analytical description of sted microscopy performance,” Opt. Express 18(25), 26417–26429 (2010).
    [Crossref] [PubMed]
  12. F. Kienle, D. Lin, S. Alam, H. S. S. Hung, C. B. E. Gawith, H. E. Major, D. J. Richardson, and D. P. Shepherd, “Green-pumped, picosecond MgO:PPLN optical parametric oscillator,” J. Opt. Soc. Am. B 29(1),144–152 (2012).
    [Crossref]

2014 (1)

2013 (2)

J. Wang, S. Cui, L. Si, J. Chen, and Y. Feng, “All-fiber single-mode actively Q-switched laser at 1120 nm,” Opt. Express 21(1), 289–294 (2013).
[Crossref] [PubMed]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

2012 (2)

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

F. Kienle, D. Lin, S. Alam, H. S. S. Hung, C. B. E. Gawith, H. E. Major, D. J. Richardson, and D. P. Shepherd, “Green-pumped, picosecond MgO:PPLN optical parametric oscillator,” J. Opt. Soc. Am. B 29(1),144–152 (2012).
[Crossref]

2011 (1)

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

2010 (2)

2005 (1)

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

2000 (1)

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
[Crossref]

1996 (1)

1968 (1)

G. D. Boyd and D. A. Kleinman., “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Alam, S.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman., “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Chen, J.

Chernikov, S. V.

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
[Crossref]

Clarkson, W. A.

Coln-Ramos, D. A.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Cui, S.

Eberhardt, R.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Eggeling, C.

Feng, Y.

Fleischer, S. B.

Gawith, C. B. E.

Gu, B.

Haas, F.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Hawley, R.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Hawley, T.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Hell, S. W.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Hell., S. W.

Hu, D. J. J.

Hubert, C.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Hung, H. S. S.

Ippen, E. P.

Kelleher, E. J. R.

Kienle, F.

Kleinman., D. A.

G. D. Boyd and D. A. Kleinman., “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Komoriya, A.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Legg, T.

Lenz, G.

Leutenegger, M.

Lim, J. L.

Lin, D.

Luan, F.

Major, H. E.

Moneron, G.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Murga, M.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Murray, R. T.

Nelson, J. C.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Nelson, L. E.

Nilsson, J.

Packard, B.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Popov, S. V.

D. J. J. Hu, R. T. Murray, T. Legg, T. H. Runcorn, M. Zhang, R. I. Woodward, J. L. Lim, Y. Wang, F. Luan, B. Gu, P. P. Shum, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Fiber-integrated 780 nm source for visible parametric generation,” Opt. Express 22(24), 29726–29732 (2014).
[Crossref]

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
[Crossref]

Rankin, B. R.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Rekas, M.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Richardson, D. J.

Runcorn, T. H.

Schmidt, O.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Schreiber, T.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Schroeder, J.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Schwarzer, D.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Shepherd, D. P.

Shum, P. P.

Si, L.

Taylor, J. R.

D. J. J. Hu, R. T. Murray, T. Legg, T. H. Runcorn, M. Zhang, R. I. Woodward, J. L. Lim, Y. Wang, F. Luan, B. Gu, P. P. Shum, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Fiber-integrated 780 nm source for visible parametric generation,” Opt. Express 22(24), 29726–29732 (2014).
[Crossref]

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
[Crossref]

Telford, W.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Tnnermann, A.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Walter, A.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Wang, J.

Wang, X.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

Wang, Y.

Woodward, R. I.

Wurm, C. A.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Xiao, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

Xu, X.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

Zhang, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

Zhang, M.

Zhou, P.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

Zimer, H.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Appl. Phys. B (1)

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Biophys. J (1)

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Cytometry A (1)

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

IEEE Photonic Tech. L. (1)

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman., “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the picosecond Raman fiber laser. Yb MLL, ytterbium mode-locked laser; DF, dispersive fiber; FLM, fiber loop mirror; YDFA, ytterbium-doped fiber amplifier; ISO, isolator; PC, polarization controller; LD, laser diode; WDM, wavelength division multiplexer.

Fig. 2
Fig. 2

(a) Sampling optical oscilloscope trace of the stretched mode-locked oscillator pulse (black) and autocorrelation trace of the original oscillator output (blue). Inset: optical spectrum of the stretched (black) and original (blue) oscillator pulses. (b) Optical spectrum of the output of the Raman amplifier. Inset: sampling optical oscilloscope trace of the filtered 1120 nm pulses.

Fig. 3
Fig. 3

Photograph of the fiber-coupled frequency-doubling module.

Fig. 4
Fig. 4

(a) Sampling optical oscilloscope trace and optical spectrum (inset) of the 560 nm frequency-doubled module output. (b) Measured beam caustic of the collimated module output focused by an f = 200 mm lens with the Gaussian beam fit parameters (inset).

Metrics