Abstract

We report the development of a fiber-integrated picosecond source at 560 nm by second harmonic generation of a Raman fiber laser. A picosecond ytterbium master oscillator power fiber amplifier is used to pulse-pump a Raman amplifier, which is seeded by a continuous wave distributed feedback laser diode operating at 1120 nm. The pulse train generated at 1120 nm is frequency-doubled in a fiber-coupled periodically-poled lithium niobate crystal module, producing 450 mW of average power at 560 nm with a pulse duration of 150 ps at a repetition rate of 47.5 MHz. The near diffraction-limited (M2 = 1.02) collimated output beam is ideal for super-resolution microscopy applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient nanosecond 560 nm source by SHG of a combined Yb-Raman fiber amplifier

T. H. Runcorn, R. T. Murray, and J. R. Taylor
Opt. Express 26(4) 4440-4447 (2018)

Duration-tunable picosecond source at 560  nm with watt-level average power

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor
Opt. Lett. 40(13) 3085-3088 (2015)

Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor
Opt. Express 13(18) 6772-6776 (2005)

References

  • View by:
  • |
  • |
  • |

  1. B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
    [Crossref] [PubMed]
  2. W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
    [Crossref] [PubMed]
  3. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, “Efficient frequency doubling of a femtosecond fiber laser,” Opt. Lett. 21(21), 1759–1761 (1996).
    [Crossref] [PubMed]
  4. S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
    [Crossref]
  5. J. Wang, S. Cui, L. Si, J. Chen, and Y. Feng, “All-fiber single-mode actively Q-switched laser at 1120 nm,” Opt. Express 21(1), 289–294 (2013).
    [Crossref] [PubMed]
  6. H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
    [Crossref]
  7. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  8. M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
    [Crossref]
  9. D. J. J. Hu, R. T. Murray, T. Legg, T. H. Runcorn, M. Zhang, R. I. Woodward, J. L. Lim, Y. Wang, F. Luan, B. Gu, P. P. Shum, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Fiber-integrated 780 nm source for visible parametric generation,” Opt. Express 22(24), 29726–29732 (2014).
    [Crossref]
  10. G. D. Boyd and D. A. Kleinman., “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  11. M. Leutenegger, C. Eggeling, and S. W. Hell., “Analytical description of sted microscopy performance,” Opt. Express 18(25), 26417–26429 (2010).
    [Crossref] [PubMed]
  12. F. Kienle, D. Lin, S. Alam, H. S. S. Hung, C. B. E. Gawith, H. E. Major, D. J. Richardson, and D. P. Shepherd, “Green-pumped, picosecond MgO:PPLN optical parametric oscillator,” J. Opt. Soc. Am. B 29(1),144–152 (2012).
    [Crossref]

2014 (1)

2013 (2)

J. Wang, S. Cui, L. Si, J. Chen, and Y. Feng, “All-fiber single-mode actively Q-switched laser at 1120 nm,” Opt. Express 21(1), 289–294 (2013).
[Crossref] [PubMed]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

2012 (2)

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

F. Kienle, D. Lin, S. Alam, H. S. S. Hung, C. B. E. Gawith, H. E. Major, D. J. Richardson, and D. P. Shepherd, “Green-pumped, picosecond MgO:PPLN optical parametric oscillator,” J. Opt. Soc. Am. B 29(1),144–152 (2012).
[Crossref]

2011 (1)

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

2010 (2)

2005 (1)

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

2000 (1)

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
[Crossref]

1996 (1)

1968 (1)

G. D. Boyd and D. A. Kleinman., “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Alam, S.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman., “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Chen, J.

Chernikov, S. V.

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
[Crossref]

Clarkson, W. A.

Coln-Ramos, D. A.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Cui, S.

Eberhardt, R.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Eggeling, C.

Feng, Y.

Fleischer, S. B.

Gawith, C. B. E.

Gu, B.

Haas, F.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Hawley, R.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Hawley, T.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Hell, S. W.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Hell., S. W.

Hu, D. J. J.

Hubert, C.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Hung, H. S. S.

Ippen, E. P.

Kelleher, E. J. R.

Kienle, F.

Kleinman., D. A.

G. D. Boyd and D. A. Kleinman., “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Komoriya, A.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Legg, T.

Lenz, G.

Leutenegger, M.

Lim, J. L.

Lin, D.

Luan, F.

Major, H. E.

Moneron, G.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Murga, M.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Murray, R. T.

Nelson, J. C.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Nelson, L. E.

Nilsson, J.

Packard, B.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Popov, S. V.

D. J. J. Hu, R. T. Murray, T. Legg, T. H. Runcorn, M. Zhang, R. I. Woodward, J. L. Lim, Y. Wang, F. Luan, B. Gu, P. P. Shum, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Fiber-integrated 780 nm source for visible parametric generation,” Opt. Express 22(24), 29726–29732 (2014).
[Crossref]

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
[Crossref]

Rankin, B. R.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Rekas, M.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Richardson, D. J.

Runcorn, T. H.

Schmidt, O.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Schreiber, T.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Schroeder, J.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Schwarzer, D.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Shepherd, D. P.

Shum, P. P.

Si, L.

Taylor, J. R.

D. J. J. Hu, R. T. Murray, T. Legg, T. H. Runcorn, M. Zhang, R. I. Woodward, J. L. Lim, Y. Wang, F. Luan, B. Gu, P. P. Shum, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Fiber-integrated 780 nm source for visible parametric generation,” Opt. Express 22(24), 29726–29732 (2014).
[Crossref]

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
[Crossref]

Telford, W.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

Tnnermann, A.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Walter, A.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Wang, J.

Wang, X.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

Wang, Y.

Woodward, R. I.

Wurm, C. A.

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Xiao, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

Xu, X.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

Zhang, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

Zhang, M.

Zhou, P.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

Zimer, H.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Appl. Phys. B (1)

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tnnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Biophys. J (1)

B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Coln-Ramos, and S. W. Hell, “Nanoscopy in a living multicellular organism expressing GFP,” Biophys. J 100(12), L63–L65 (2011).
[Crossref] [PubMed]

Cytometry A (1)

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[Crossref] [PubMed]

IEEE Photonic Tech. L. (1)

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-Power 1120-nm Yb-Doped fiber laser and amplifier,” IEEE Photonic Tech. L. 25(21), 2093–2096 (2013).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman., “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174(1), 231–234 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the picosecond Raman fiber laser. Yb MLL, ytterbium mode-locked laser; DF, dispersive fiber; FLM, fiber loop mirror; YDFA, ytterbium-doped fiber amplifier; ISO, isolator; PC, polarization controller; LD, laser diode; WDM, wavelength division multiplexer.
Fig. 2
Fig. 2 (a) Sampling optical oscilloscope trace of the stretched mode-locked oscillator pulse (black) and autocorrelation trace of the original oscillator output (blue). Inset: optical spectrum of the stretched (black) and original (blue) oscillator pulses. (b) Optical spectrum of the output of the Raman amplifier. Inset: sampling optical oscilloscope trace of the filtered 1120 nm pulses.
Fig. 3
Fig. 3 Photograph of the fiber-coupled frequency-doubling module.
Fig. 4
Fig. 4 (a) Sampling optical oscilloscope trace and optical spectrum (inset) of the 560 nm frequency-doubled module output. (b) Measured beam caustic of the collimated module output focused by an f = 200 mm lens with the Gaussian beam fit parameters (inset).

Metrics