Abstract

In this paper we experimentally realized bidirectional optical wireless communication (OWC) link using four channel visible LED board exploiting wavelength division multiplexing (WDM) for the downlink and infrared LED for uplink. We achieved greater than 5 Gbit/s data rate at common indoor distance (1.5 to 4 m) for downlink and 1.5 Gbit/s for uplink using commercially available LEDs. We achieved these results after a careful choice of the LED emission wavelengths and the optical filter spectra. Moreover, we investigate the optimal LED working current and the optimal modulation depth. The bit error ratios of all the channels were maintained lower than the FEC limit (3.8·10−3).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED

Yuanquan Wang, Yiguang Wang, Nan Chi, Jianjun Yu, and Huiliang Shang
Opt. Express 21(1) 1203-1208 (2013)

3.4 Gbit/s visible optical wireless transmission based on RGB LED

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella
Opt. Express 20(26) B501-B506 (2012)

Optical bidirectional beacon based visible light communications

Samrat Vikramaditya Tiwari, Atul Sewaiwar, and Yeon Ho Chung
Opt. Express 23(20) 26551-26564 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert, T. Gessmann, and J. K. Kim, Light Emitting Diodes (Wiley Online Library, 2005).
  2. A. M. Khalid, G. Cossu, and E. Ciaramella, “Diffuse IR-optical wireless system demonstration for mobile patient monitoring in hospitals,” Transparent Optical Networks (ICTON), 2013 15th International Conference on (IEEE, 2013), 1–4.
    [Crossref]
  3. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
    [Crossref]
  4. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  5. European standard EN 12464–1: Lighting of indoor work places (2003).
  6. C. Kottke, J. Hilt, K. Habel, J. Vučić, and K. D. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” European Conference and Exhibition on Optical Communication (pp. 1-3). Optical Society of America (2012).
    [Crossref]
  7. A. H. Azhar, T. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
    [Crossref]
  8. Y. Wang, R. Li, Y. Wang, and Z. Zhang, “3.25-Gbps visible light communication system based on single carrier frequency domain equalization utilizing an RGB LED,” Optical Fiber Communication Conference (Th1F–1). Optical Society of America (2014).
    [Crossref]
  9. ITU-T Recommendation, G.975.1, Feb. 2004.
  10. R. A. Shafik, S. Rahman, and R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in ICECE International Conference on Electrical and Computer Engineering (IEEE, 2006) pp. 408–411.
  11. IEC 62471 (2006). “Photobiological Safety of Lamps and Lamp Systems.”

2013 (1)

A. H. Azhar, T. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

2012 (2)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Azhar, A. H.

A. H. Azhar, T. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Ciaramella, E.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Cossu, G.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

O’Brien, D.

A. H. Azhar, T. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Tran, T.

A. H. Azhar, T. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. H. Azhar, T. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

IEEE Photonics J. (1)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Opt. Express (1)

Other (8)

European standard EN 12464–1: Lighting of indoor work places (2003).

C. Kottke, J. Hilt, K. Habel, J. Vučić, and K. D. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” European Conference and Exhibition on Optical Communication (pp. 1-3). Optical Society of America (2012).
[Crossref]

Y. Wang, R. Li, Y. Wang, and Z. Zhang, “3.25-Gbps visible light communication system based on single carrier frequency domain equalization utilizing an RGB LED,” Optical Fiber Communication Conference (Th1F–1). Optical Society of America (2014).
[Crossref]

ITU-T Recommendation, G.975.1, Feb. 2004.

R. A. Shafik, S. Rahman, and R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in ICECE International Conference on Electrical and Computer Engineering (IEEE, 2006) pp. 408–411.

IEC 62471 (2006). “Photobiological Safety of Lamps and Lamp Systems.”

E. F. Schubert, T. Gessmann, and J. K. Kim, Light Emitting Diodes (Wiley Online Library, 2005).

A. M. Khalid, G. Cossu, and E. Ciaramella, “Diffuse IR-optical wireless system demonstration for mobile patient monitoring in hospitals,” Transparent Optical Networks (ICTON), 2013 15th International Conference on (IEEE, 2013), 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of the experimental setup of the VLC system. AWG: Arbitrary waveform generator; RTO: Real Time Oscilloscope.

Fig. 2
Fig. 2

Normalized optical spectra of the LEDs used for the downlink experiment with the corresponding optical filters (dashed lines). The percentages values represent the transmittance of the filters.

Fig. 3
Fig. 3

(a-e) Achievable bitrates as a function of the electrical signal power to the LEDs at different bias currents for all the WDM channels. (f-j) optimal bit and power loading for downlink and uplink measured at 1.5 m (720 lx) for all the WDM channels. All the results are taken considering a BER 3.8·10−3.

Fig. 4
Fig. 4

Received constellation diagrams of the highest modulation format loaded for different channels: red, green, amber, blue and infrared.

Fig. 5
Fig. 5

a) Achievable downlink bit rates as a function of the Tx-Rx distance for the four WDM channels. b) Achievable total bit rates for downlink (left axis) and uplink (right axis) as a function of the Tx-Rx distance. All the bit rates are taken at BER 3.8·10−3.

Fig. 6
Fig. 6

Maximum downlink bit rates versus the radial distance for each WDM channel.

Metrics