Abstract

We report on the design, fabrication and analysis of vertical-cavity surface-emitting transistor-lasers (T-VCSELs) based on the homogeneous integration of an InGaAs/GaAs VCSEL and an AlGaAs/GaAs pnp-heterojunction bipolar transistor (HBT). Epitaxial regrowth confinement, modulation doping, intracavity contacting and non-conducting mirrors are used to ensure a low-loss structure, and a variety of design variations are investigated for a proper internal biasing and current injection to ensure a wide operating range. Optimized devices show mW-range output power, mA-range base threshold current and high-temperature operation to at least 60°C with the transistor in its active mode of operation for base currents well beyond threshold. Current confinement schemes based on pnp-blocking layers or a buried tunnel junction are investigated as well as asymmetric current injection for reduced extrinsic resistances.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of base-region thickness on the performance of Pnp transistor-VCSEL

M. Nadeem Akram, Y. Xiang, X. Yu, Thomas Zabel, and Mattias Hammar
Opt. Express 22(22) 27398-27414 (2014)

Design and epitaxy of 1.5 μm InGaAsP-InP MQW material for a transistor laser

Zigang Duan, Wei Shi, Lukas Chrostowski, Xiaodong Huang, Ning Zhou, and Guangyue Chai
Opt. Express 18(2) 1501-1509 (2010)

Room-temperature operation of npn- AlGaInAs/InP multiple quantum well transistor laser emitting at 1.3-µm wavelength

Mizuki Shirao, Takashi Sato, Noriaki Sato, Nobuhiko Nishiyama, and Shigehisa Arai
Opt. Express 20(4) 3983-3989 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: Theory and Experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
    [Crossref]
  2. H. W. Then, M. Feng, and N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Appl. Phys. Lett. 96(11), 113509 (2010).
    [Crossref]
  3. B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
    [Crossref]
  4. T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
    [Crossref]
  5. M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
    [Crossref]
  6. I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
    [Crossref]
  7. M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
    [Crossref]
  8. F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
    [Crossref]
  9. E. W. Iverson and M. Feng, “Transistor laser power stabilization using direct collector current feedback control,” Photon. Technol. Lett. 24(1), 4–6 (2012).
    [Crossref]
  10. B. Faraji, N. A. F. Jaeger, and L. Chrostowski, “Modelling the effect of the feedback on the small signal modulation of the transistor laser,” 23rd annual meeting of the IEEE Photonics Society, p. WX4, Denver CO, Nov 7–11 (2010).
    [Crossref]
  11. H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
    [Crossref]
  12. W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
    [Crossref]
  13. B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
    [Crossref]
  14. H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2 → 22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
    [Crossref]
  15. P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication,” Proc. SPIE 8639, 86390X (2013).
    [Crossref]
  16. D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
    [Crossref]
  17. See, e.g., Proceedings of the Optical Fiber Communication Conference, Optical Society of America (2014).
  18. A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
    [Crossref]
  19. A. Paraskevopoulos, H.-J. Hensel, W.-D. Molzow, H. Klein, N. Grote, N. Ledentsov, V. Shchukin, C. Möller, A. Kovsh, D. Livshits, I. Krestnikov, S. Mikhrin, P. Matthijsse, and G. Kuyt, “Ultra-High-Bandwidth (>35 GHz) Electrooptically-Modulated VCSEL,” Optical Fiber Communication (OFC) conference 2006, PDP 22 (2006).
    [Crossref]
  20. L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, “50-GHz optically injection-locked 1.55-µm VCSELs,” IEEE Photon. Technol. Lett. 18(2), 367–369 (2006).
    [Crossref]
  21. H. Dalir and F. Koyma, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
    [Crossref]
  22. I. S. Chung and J. Mørk, “Speed enhancement in VCSELs employing grating mirrors,” Proc. SPIE 8633, 863308 (2013).
    [Crossref]
  23. K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with a 20 GHz modulation bandwidth,” Proc. 36th Eur. Conf. Opt. Commun., Torino, Italy, 2010.
    [Crossref]
  24. M. K. Wu, M. Liu, R. Bambery, M. Feng, and N. Holonyak, “Low power operation of a vertical cavity transistor laser via the reduction of collector offset voltage,” IEEE Photon. Technol. Lett. 26(10), 1003–1006 (2014).
    [Crossref]
  25. B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
    [Crossref]
  26. W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
    [Crossref]
  27. M. K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” Photon. Technol. Lett. 24(15), 1346–1348 (2012).
    [Crossref]
  28. M. K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunnelling,” Appl. Phys. Lett. 101, 088102 (2012).
  29. M. Liu, M. K. Wu, M. Feng, and N. Holonyak, “Lateral feeding design and selective oxidation process in vertical cavity transistor laser,” J. Appl. Phys. 114(16), 163104 (2013).
    [Crossref]
  30. Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” Photonics Technol. Lett. 27(7), 721–724 (2015).
    [Crossref]
  31. R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-µm VCSELs,” IET Optoelectronics 3(2), 112 (2009).
    [Crossref]
  32. R. Marcks von Würtemberg, Z. Zhang, J. Berggren, and M. Hammar, “A novel electrical and optical confinement scheme for surface emitting optoelectronic devices,” Proc. SPIE 6350, 63500J(2006).
    [Crossref]
  33. W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
    [Crossref]
  34. X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
    [Crossref]
  35. Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Minority current distribution in InGaAs/GaAs transistor-vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 102(19), 191101 (2013).
    [Crossref]
  36. M. Nadeem Akram, Y. Xiang, X. Yu, T. Zabel, and M. Hammar, “Influence of base-region thickness on the performance of pnp transistor-VCSEL,” Opt. Express 22(22), 27398–27414 (2014).
    [Crossref] [PubMed]
  37. J. J. Chen, G.-B. Gao, J.-I. Chyi, and H. Morkoc, “Breakdown behaviour of GaAs/AlGaAs HBT’s,” IEEE Trans. Delectron. Dev. 36(10), 2165–2172 (1989).
    [Crossref]
  38. X. Yu, Y. Xiang, T. Zabel, J. Berggren, and M. Hammar, “1.3 μm Buried Tunnel junction InGaAs/GaAs VCSELs,” 37th Workshop on Compound Semiconductor Devices and Integrated Circuits held in Europe (WOCSDICE 2013), May 26th to 29th, 2013, Warnemünde, Germany.
  39. N. Suzuki, T. Anan, H. Hatakeyama, and M. Tsuji, “Low resistance tunnel junctions with type-II heterostructures,” Appl. Phys. Lett. 88(23), 231103 (2006).
    [Crossref]

2015 (2)

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” Photonics Technol. Lett. 27(7), 721–724 (2015).
[Crossref]

2014 (3)

M. K. Wu, M. Liu, R. Bambery, M. Feng, and N. Holonyak, “Low power operation of a vertical cavity transistor laser via the reduction of collector offset voltage,” IEEE Photon. Technol. Lett. 26(10), 1003–1006 (2014).
[Crossref]

M. Nadeem Akram, Y. Xiang, X. Yu, T. Zabel, and M. Hammar, “Influence of base-region thickness on the performance of pnp transistor-VCSEL,” Opt. Express 22(22), 27398–27414 (2014).
[Crossref] [PubMed]

H. Dalir and F. Koyma, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

2013 (6)

I. S. Chung and J. Mørk, “Speed enhancement in VCSELs employing grating mirrors,” Proc. SPIE 8633, 863308 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication,” Proc. SPIE 8639, 86390X (2013).
[Crossref]

H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: Theory and Experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
[Crossref]

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Minority current distribution in InGaAs/GaAs transistor-vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

M. Liu, M. K. Wu, M. Feng, and N. Holonyak, “Lateral feeding design and selective oxidation process in vertical cavity transistor laser,” J. Appl. Phys. 114(16), 163104 (2013).
[Crossref]

2012 (6)

M. K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” Photon. Technol. Lett. 24(15), 1346–1348 (2012).
[Crossref]

M. K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunnelling,” Appl. Phys. Lett. 101, 088102 (2012).

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

E. W. Iverson and M. Feng, “Transistor laser power stabilization using direct collector current feedback control,” Photon. Technol. Lett. 24(1), 4–6 (2012).
[Crossref]

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
[Crossref]

2011 (4)

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
[Crossref]

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

2010 (1)

H. W. Then, M. Feng, and N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Appl. Phys. Lett. 96(11), 113509 (2010).
[Crossref]

2009 (4)

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[Crossref]

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2 → 22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-µm VCSELs,” IET Optoelectronics 3(2), 112 (2009).
[Crossref]

2008 (4)

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

2006 (3)

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, “50-GHz optically injection-locked 1.55-µm VCSELs,” IEEE Photon. Technol. Lett. 18(2), 367–369 (2006).
[Crossref]

N. Suzuki, T. Anan, H. Hatakeyama, and M. Tsuji, “Low resistance tunnel junctions with type-II heterostructures,” Appl. Phys. Lett. 88(23), 231103 (2006).
[Crossref]

R. Marcks von Würtemberg, Z. Zhang, J. Berggren, and M. Hammar, “A novel electrical and optical confinement scheme for surface emitting optoelectronic devices,” Proc. SPIE 6350, 63500J(2006).
[Crossref]

1989 (1)

J. J. Chen, G.-B. Gao, J.-I. Chyi, and H. Morkoc, “Breakdown behaviour of GaAs/AlGaAs HBT’s,” IEEE Trans. Delectron. Dev. 36(10), 2165–2172 (1989).
[Crossref]

Akram, M. N.

Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” Photonics Technol. Lett. 27(7), 721–724 (2015).
[Crossref]

Akram, N.

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Minority current distribution in InGaAs/GaAs transistor-vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

Amann, M. C.

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, “50-GHz optically injection-locked 1.55-µm VCSELs,” IEEE Photon. Technol. Lett. 18(2), 367–369 (2006).
[Crossref]

Anan, T.

N. Suzuki, T. Anan, H. Hatakeyama, and M. Tsuji, “Low resistance tunnel junctions with type-II heterostructures,” Appl. Phys. Lett. 88(23), 231103 (2006).
[Crossref]

Andrekson, P. A.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with a 20 GHz modulation bandwidth,” Proc. 36th Eur. Conf. Opt. Commun., Torino, Italy, 2010.
[Crossref]

Arai, S.

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

Baks, C.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Bambery, R.

M. K. Wu, M. Liu, R. Bambery, M. Feng, and N. Holonyak, “Low power operation of a vertical cavity transistor laser via the reduction of collector offset voltage,” IEEE Photon. Technol. Lett. 26(10), 1003–1006 (2014).
[Crossref]

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

Berggren, J.

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Minority current distribution in InGaAs/GaAs transistor-vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-µm VCSELs,” IET Optoelectronics 3(2), 112 (2009).
[Crossref]

R. Marcks von Würtemberg, Z. Zhang, J. Berggren, and M. Hammar, “A novel electrical and optical confinement scheme for surface emitting optoelectronic devices,” Proc. SPIE 6350, 63500J(2006).
[Crossref]

Chang-Hasnain, C. J.

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, “50-GHz optically injection-locked 1.55-µm VCSELs,” IEEE Photon. Technol. Lett. 18(2), 367–369 (2006).
[Crossref]

Chen, J. J.

J. J. Chen, G.-B. Gao, J.-I. Chyi, and H. Morkoc, “Breakdown behaviour of GaAs/AlGaAs HBT’s,” IEEE Trans. Delectron. Dev. 36(10), 2165–2172 (1989).
[Crossref]

Chrostowski, L.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, “50-GHz optically injection-locked 1.55-µm VCSELs,” IEEE Photon. Technol. Lett. 18(2), 367–369 (2006).
[Crossref]

Chung, I. S.

I. S. Chung and J. Mørk, “Speed enhancement in VCSELs employing grating mirrors,” Proc. SPIE 8633, 863308 (2013).
[Crossref]

Chyi, J.-I.

J. J. Chen, G.-B. Gao, J.-I. Chyi, and H. Morkoc, “Breakdown behaviour of GaAs/AlGaAs HBT’s,” IEEE Trans. Delectron. Dev. 36(10), 2165–2172 (1989).
[Crossref]

Dalir, H.

H. Dalir and F. Koyma, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

Doany, F. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Faraji, B.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

Feng, M.

M. K. Wu, M. Liu, R. Bambery, M. Feng, and N. Holonyak, “Low power operation of a vertical cavity transistor laser via the reduction of collector offset voltage,” IEEE Photon. Technol. Lett. 26(10), 1003–1006 (2014).
[Crossref]

M. Liu, M. K. Wu, M. Feng, and N. Holonyak, “Lateral feeding design and selective oxidation process in vertical cavity transistor laser,” J. Appl. Phys. 114(16), 163104 (2013).
[Crossref]

H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: Theory and Experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
[Crossref]

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

E. W. Iverson and M. Feng, “Transistor laser power stabilization using direct collector current feedback control,” Photon. Technol. Lett. 24(1), 4–6 (2012).
[Crossref]

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

M. K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunnelling,” Appl. Phys. Lett. 101, 088102 (2012).

M. K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” Photon. Technol. Lett. 24(15), 1346–1348 (2012).
[Crossref]

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

H. W. Then, M. Feng, and N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Appl. Phys. Lett. 96(11), 113509 (2010).
[Crossref]

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2 → 22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

Gao, G.-B.

J. J. Chen, G.-B. Gao, J.-I. Chyi, and H. Morkoc, “Breakdown behaviour of GaAs/AlGaAs HBT’s,” IEEE Trans. Delectron. Dev. 36(10), 2165–2172 (1989).
[Crossref]

Greenberg, M.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

Gustavsson, J. S.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication,” Proc. SPIE 8639, 86390X (2013).
[Crossref]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with a 20 GHz modulation bandwidth,” Proc. 36th Eur. Conf. Opt. Commun., Torino, Italy, 2010.
[Crossref]

Haglund, A.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with a 20 GHz modulation bandwidth,” Proc. 36th Eur. Conf. Opt. Commun., Torino, Italy, 2010.
[Crossref]

Haglund, E.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication,” Proc. SPIE 8639, 86390X (2013).
[Crossref]

Hammar, M.

Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” Photonics Technol. Lett. 27(7), 721–724 (2015).
[Crossref]

M. Nadeem Akram, Y. Xiang, X. Yu, T. Zabel, and M. Hammar, “Influence of base-region thickness on the performance of pnp transistor-VCSEL,” Opt. Express 22(22), 27398–27414 (2014).
[Crossref] [PubMed]

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Minority current distribution in InGaAs/GaAs transistor-vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-µm VCSELs,” IET Optoelectronics 3(2), 112 (2009).
[Crossref]

R. Marcks von Würtemberg, Z. Zhang, J. Berggren, and M. Hammar, “A novel electrical and optical confinement scheme for surface emitting optoelectronic devices,” Proc. SPIE 6350, 63500J(2006).
[Crossref]

Hatakeyama, H.

N. Suzuki, T. Anan, H. Hatakeyama, and M. Tsuji, “Low resistance tunnel junctions with type-II heterostructures,” Appl. Phys. Lett. 88(23), 231103 (2006).
[Crossref]

Holonyak, N.

M. K. Wu, M. Liu, R. Bambery, M. Feng, and N. Holonyak, “Low power operation of a vertical cavity transistor laser via the reduction of collector offset voltage,” IEEE Photon. Technol. Lett. 26(10), 1003–1006 (2014).
[Crossref]

M. Liu, M. K. Wu, M. Feng, and N. Holonyak, “Lateral feeding design and selective oxidation process in vertical cavity transistor laser,” J. Appl. Phys. 114(16), 163104 (2013).
[Crossref]

H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: Theory and Experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
[Crossref]

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

M. K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunnelling,” Appl. Phys. Lett. 101, 088102 (2012).

M. K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” Photon. Technol. Lett. 24(15), 1346–1348 (2012).
[Crossref]

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

H. W. Then, M. Feng, and N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Appl. Phys. Lett. 96(11), 113509 (2010).
[Crossref]

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2 → 22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

Iverson, E. W.

E. W. Iverson and M. Feng, “Transistor laser power stabilization using direct collector current feedback control,” Photon. Technol. Lett. 24(1), 4–6 (2012).
[Crossref]

James, A.

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

Joel, A.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication,” Proc. SPIE 8639, 86390X (2013).
[Crossref]

Kaatuzian, H.

I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
[Crossref]

Karlsson, M.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with a 20 GHz modulation bandwidth,” Proc. 36th Eur. Conf. Opt. Commun., Torino, Italy, 2010.
[Crossref]

Koyma, F.

H. Dalir and F. Koyma, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

Kuchta, D. M.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Larsson, A.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication,” Proc. SPIE 8639, 86390X (2013).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
[Crossref]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with a 20 GHz modulation bandwidth,” Proc. 36th Eur. Conf. Opt. Commun., Torino, Italy, 2010.
[Crossref]

Leburton, J. P.

I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
[Crossref]

Lee, S. H.

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

Lestrade, M.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

Li, Z.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

Liu, M.

M. K. Wu, M. Liu, R. Bambery, M. Feng, and N. Holonyak, “Low power operation of a vertical cavity transistor laser via the reduction of collector offset voltage,” IEEE Photon. Technol. Lett. 26(10), 1003–1006 (2014).
[Crossref]

M. Liu, M. K. Wu, M. Feng, and N. Holonyak, “Lateral feeding design and selective oxidation process in vertical cavity transistor laser,” J. Appl. Phys. 114(16), 163104 (2013).
[Crossref]

Marcks von Würtemberg, R.

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-µm VCSELs,” IET Optoelectronics 3(2), 112 (2009).
[Crossref]

R. Marcks von Würtemberg, Z. Zhang, J. Berggren, and M. Hammar, “A novel electrical and optical confinement scheme for surface emitting optoelectronic devices,” Proc. SPIE 6350, 63500J(2006).
[Crossref]

Mørk, J.

I. S. Chung and J. Mørk, “Speed enhancement in VCSELs employing grating mirrors,” Proc. SPIE 8633, 863308 (2013).
[Crossref]

Morkoc, H.

J. J. Chen, G.-B. Gao, J.-I. Chyi, and H. Morkoc, “Breakdown behaviour of GaAs/AlGaAs HBT’s,” IEEE Trans. Delectron. Dev. 36(10), 2165–2172 (1989).
[Crossref]

Nadeem Akram, M.

Nishiyama, N.

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

Olsson, B.-E.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with a 20 GHz modulation bandwidth,” Proc. 36th Eur. Conf. Opt. Commun., Torino, Italy, 2010.
[Crossref]

Ortsiefer, M.

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, “50-GHz optically injection-locked 1.55-µm VCSELs,” IEEE Photon. Technol. Lett. 18(2), 367–369 (2006).
[Crossref]

Proesel, J.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Pulfrey, D. L.

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

Reuterskiöld-Hedlund, C.

Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” Photonics Technol. Lett. 27(7), 721–724 (2015).
[Crossref]

Rhodin, A.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with a 20 GHz modulation bandwidth,” Proc. 36th Eur. Conf. Opt. Commun., Torino, Italy, 2010.
[Crossref]

Rylyakov, A. V.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Safaisini, R.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication,” Proc. SPIE 8639, 86390X (2013).
[Crossref]

Schow, C. L.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Shau, R.

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, “50-GHz optically injection-locked 1.55-µm VCSELs,” IEEE Photon. Technol. Lett. 18(2), 367–369 (2006).
[Crossref]

Shi, W.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

Shirao, M.

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

Simon Li, Z. M.

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

Suzuki, N.

N. Suzuki, T. Anan, H. Hatakeyama, and M. Tsuji, “Low resistance tunnel junctions with type-II heterostructures,” Appl. Phys. Lett. 88(23), 231103 (2006).
[Crossref]

Szczerba, K.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with a 20 GHz modulation bandwidth,” Proc. 36th Eur. Conf. Opt. Commun., Torino, Italy, 2010.
[Crossref]

Taghavi, I.

I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
[Crossref]

Tan, F.

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

Tan, T.

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

Then, H. W.

H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: Theory and Experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
[Crossref]

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

H. W. Then, M. Feng, and N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Appl. Phys. Lett. 96(11), 113509 (2010).
[Crossref]

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2 → 22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

Tsuji, M.

N. Suzuki, T. Anan, H. Hatakeyama, and M. Tsuji, “Low resistance tunnel junctions with type-II heterostructures,” Appl. Phys. Lett. 88(23), 231103 (2006).
[Crossref]

Walter, G.

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2 → 22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

Westbergh, P.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication,” Proc. SPIE 8639, 86390X (2013).
[Crossref]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with a 20 GHz modulation bandwidth,” Proc. 36th Eur. Conf. Opt. Commun., Torino, Italy, 2010.
[Crossref]

Wu, C. H.

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2 → 22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

Wu, M. K.

M. K. Wu, M. Liu, R. Bambery, M. Feng, and N. Holonyak, “Low power operation of a vertical cavity transistor laser via the reduction of collector offset voltage,” IEEE Photon. Technol. Lett. 26(10), 1003–1006 (2014).
[Crossref]

M. Liu, M. K. Wu, M. Feng, and N. Holonyak, “Lateral feeding design and selective oxidation process in vertical cavity transistor laser,” J. Appl. Phys. 114(16), 163104 (2013).
[Crossref]

M. K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunnelling,” Appl. Phys. Lett. 101, 088102 (2012).

M. K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” Photon. Technol. Lett. 24(15), 1346–1348 (2012).
[Crossref]

Xiang, Y.

Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” Photonics Technol. Lett. 27(7), 721–724 (2015).
[Crossref]

M. Nadeem Akram, Y. Xiang, X. Yu, T. Zabel, and M. Hammar, “Influence of base-region thickness on the performance of pnp transistor-VCSEL,” Opt. Express 22(22), 27398–27414 (2014).
[Crossref] [PubMed]

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Minority current distribution in InGaAs/GaAs transistor-vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

Yang, C.

Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” Photonics Technol. Lett. 27(7), 721–724 (2015).
[Crossref]

Yu, X.

Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” Photonics Technol. Lett. 27(7), 721–724 (2015).
[Crossref]

M. Nadeem Akram, Y. Xiang, X. Yu, T. Zabel, and M. Hammar, “Influence of base-region thickness on the performance of pnp transistor-VCSEL,” Opt. Express 22(22), 27398–27414 (2014).
[Crossref] [PubMed]

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Minority current distribution in InGaAs/GaAs transistor-vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-µm VCSELs,” IET Optoelectronics 3(2), 112 (2009).
[Crossref]

Zabel, T.

Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” Photonics Technol. Lett. 27(7), 721–724 (2015).
[Crossref]

M. Nadeem Akram, Y. Xiang, X. Yu, T. Zabel, and M. Hammar, “Influence of base-region thickness on the performance of pnp transistor-VCSEL,” Opt. Express 22(22), 27398–27414 (2014).
[Crossref] [PubMed]

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Minority current distribution in InGaAs/GaAs transistor-vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

Zhang, Z.

R. Marcks von Würtemberg, Z. Zhang, J. Berggren, and M. Hammar, “A novel electrical and optical confinement scheme for surface emitting optoelectronic devices,” Proc. SPIE 6350, 63500J(2006).
[Crossref]

Zhao, X.

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, “50-GHz optically injection-locked 1.55-µm VCSELs,” IEEE Photon. Technol. Lett. 18(2), 367–369 (2006).
[Crossref]

Appl. Phys. Express (1)

H. Dalir and F. Koyma, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

Appl. Phys. Lett. (12)

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

M. K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunnelling,” Appl. Phys. Lett. 101, 088102 (2012).

Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Minority current distribution in InGaAs/GaAs transistor-vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 102(19), 191101 (2013).
[Crossref]

H. W. Then, M. Feng, and N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Appl. Phys. Lett. 96(11), 113509 (2010).
[Crossref]

T. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Appl. Phys. Lett. 99(6), 061105 (2011).
[Crossref]

I. Taghavi, H. Kaatuzian, and J. P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett. 100(23), 231114 (2012).
[Crossref]

M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett. 95(3), 033509 (2009).
[Crossref]

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101(15), 151118 (2012).
[Crossref]

H. W. Then, F. Tan, M. Feng, and N. Holonyak, “Transistor laser optical and electrical linearity enhancement with collector current feedback,” Appl. Phys. Lett. 100(22), 221104 (2012).
[Crossref]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2 → 22 GHz) with a tunnel-junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[Crossref]

N. Suzuki, T. Anan, H. Hatakeyama, and M. Tsuji, “Low resistance tunnel junctions with type-II heterostructures,” Appl. Phys. Lett. 88(23), 231103 (2006).
[Crossref]

Electron. Lett. (1)

X. Yu, Y. Xiang, J. Berggren, T. Zabel, M. Hammar, and N. Akram, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (4)

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

M. K. Wu, M. Liu, R. Bambery, M. Feng, and N. Holonyak, “Low power operation of a vertical cavity transistor laser via the reduction of collector offset voltage,” IEEE Photon. Technol. Lett. 26(10), 1003–1006 (2014).
[Crossref]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, “50-GHz optically injection-locked 1.55-µm VCSELs,” IEEE Photon. Technol. Lett. 18(2), 367–369 (2006).
[Crossref]

IEEE Trans. Delectron. Dev. (1)

J. J. Chen, G.-B. Gao, J.-I. Chyi, and H. Morkoc, “Breakdown behaviour of GaAs/AlGaAs HBT’s,” IEEE Trans. Delectron. Dev. 36(10), 2165–2172 (1989).
[Crossref]

IET Optoelectronics (1)

R. Marcks von Würtemberg, X. Yu, J. Berggren, and M. Hammar, “Performance optimization of epitaxially regrown 1.3-µm VCSELs,” IET Optoelectronics 3(2), 112 (2009).
[Crossref]

J. Appl. Phys. (1)

M. Liu, M. K. Wu, M. Feng, and N. Holonyak, “Lateral feeding design and selective oxidation process in vertical cavity transistor laser,” J. Appl. Phys. 114(16), 163104 (2013).
[Crossref]

Opt. Express (1)

Opt. Quantum Electron. (1)

W. Shi, B. Faraji, M. Greenberg, J. Berggren, Y. Xiang, M. Hammar, M. Lestrade, Z. Li, Z. M. Simon Li, and L. Chrostowski, “Design and modeling of a transistor vertical-cavity surface-emitting laser,” Opt. Quantum Electron. 42(11–13), 659–666 (2011).
[Crossref]

Photon. Technol. Lett. (2)

M. K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” Photon. Technol. Lett. 24(15), 1346–1348 (2012).
[Crossref]

E. W. Iverson and M. Feng, “Transistor laser power stabilization using direct collector current feedback control,” Photon. Technol. Lett. 24(1), 4–6 (2012).
[Crossref]

Photonics Technol. Lett. (2)

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M. N. Akram, “Performance Optimization of GaAs-based vertical-cavity surface-emitting transistor-lasers,” Photonics Technol. Lett. 27(7), 721–724 (2015).
[Crossref]

Proc. IEEE (1)

H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: Theory and Experiment,” Proc. IEEE 101(10), 2271–2298 (2013).
[Crossref]

Proc. SPIE (3)

I. S. Chung and J. Mørk, “Speed enhancement in VCSELs employing grating mirrors,” Proc. SPIE 8633, 863308 (2013).
[Crossref]

R. Marcks von Würtemberg, Z. Zhang, J. Berggren, and M. Hammar, “A novel electrical and optical confinement scheme for surface emitting optoelectronic devices,” Proc. SPIE 6350, 63500J(2006).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication,” Proc. SPIE 8639, 86390X (2013).
[Crossref]

Other (5)

See, e.g., Proceedings of the Optical Fiber Communication Conference, Optical Society of America (2014).

A. Paraskevopoulos, H.-J. Hensel, W.-D. Molzow, H. Klein, N. Grote, N. Ledentsov, V. Shchukin, C. Möller, A. Kovsh, D. Livshits, I. Krestnikov, S. Mikhrin, P. Matthijsse, and G. Kuyt, “Ultra-High-Bandwidth (>35 GHz) Electrooptically-Modulated VCSEL,” Optical Fiber Communication (OFC) conference 2006, PDP 22 (2006).
[Crossref]

B. Faraji, N. A. F. Jaeger, and L. Chrostowski, “Modelling the effect of the feedback on the small signal modulation of the transistor laser,” 23rd annual meeting of the IEEE Photonics Society, p. WX4, Denver CO, Nov 7–11 (2010).
[Crossref]

X. Yu, Y. Xiang, T. Zabel, J. Berggren, and M. Hammar, “1.3 μm Buried Tunnel junction InGaAs/GaAs VCSELs,” 37th Workshop on Compound Semiconductor Devices and Integrated Circuits held in Europe (WOCSDICE 2013), May 26th to 29th, 2013, Warnemünde, Germany.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with a 20 GHz modulation bandwidth,” Proc. 36th Eur. Conf. Opt. Commun., Torino, Italy, 2010.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic illustration of the three basic T-VCSEL designs: (a) Symmetric and (b) asymmetric designs with pnp blocking layer confinement; (c) Buried-tunnel junction blocking layer confinement. Blue and red colors indicate n- and p-doping, respectively while undoped or non-conducting regions are indicated using grey scale. Letters C, B and E, indicated the collector, base and emitter contacts (yellow color), respectively.

Fig. 2
Fig. 2

Optical micrographs of the (a) symmetric and (b) asymmetric device designs. The sidewalls of the etched square-shaped mesas are oriented along the crystallographic <011>-type directions.

Fig. 3
Fig. 3

Measured dependency of IC, VBE and Pout on IB for VCE = 3.5 V. The device designs are A-10, 100 and 200 nm with increasing base width as indicated by arrows for each curve set and the device size is 10 µm in all cases.

Fig. 4
Fig. 4

Dependency of IC, VBE and Pout on IB for a 10-µm, A-200-nm device before and after removal of the top dielectric DBR. VCE = 3.5 V.

Fig. 5
Fig. 5

Dependency of IC, VBE and Pout on IB for A-200-nm devices of size (a) 10 µm, (b) 8 µm, (c) 6 µm and (d) 4 µm for different VCE as indicated. The dashed lines are included as guides to the eye. The regions I-IV applies to VCE = 3.5 V.

Fig. 6
Fig. 6

Illustration of the current components in a T-VCSEL biased in the common-emitter configuration. Blue and red colors indicate electron and hole currents, respectively. The different contributions are: 1) Hole-injection over the forward-biased base-emitter junction (IEh); 2) Base recombination current (IBr); 3) Part of the emitter current that is swept into the collector (BIEh); 4) Majority-carrier contributions due to tunneling over the base-collector junction; and 5) Minority carrier contributions due to electron and hole injection over the base-collector junction (only effective in the saturation regime).

Fig. 7
Fig. 7

(a) Electrical and (b) optical collector diagrams for a 4-µm T-VCSEL according to design A-200 nm. The gain compression at threshold is clearly manifested as a narrowing of the collector current curves for increasing base current in equidistant steps. Red color indicates stimulated emission whereas black color indicates spontaneous emission. The reduction in threshold current around VCE = 5V corresponds to the direct-tunneling regime as schematically illustrated in Fig. 8(a). (c) A magnification of the optical collector diagram in (b) showing the evolution of the optical power for base currents close to threshold.

Fig. 8
Fig. 8

Schematic band diagrams illustrating (a) the direct-tunneling event between base and collector at sufficiently large band-bending in the base-collector junction and b) the photon-assisted tunneling effect proposed in [27] to be responsible for the breakdown in collector current in an npn-type T-VCSEL.

Fig. 9
Fig. 9

Electrical and optical collector diagrams for a 10•10-µm2-device, including (a) IC, (b) Pout and (c) VBE as function of VCE for different values of IB as indicated. The dashed lines indicate VBC = 0 and hence the transition between saturation and active range of transistor operation as measured on the metal contacts.

Fig. 10
Fig. 10

Extraction of IC, VBE and Pout as function of VCE from Fig. 9 for a single base current of 4.2 mA.

Fig. 11
Fig. 11

Temperature-dependent operation of a 4·4-µm2 T-VCSEL showing Pout, β VBE and IC, for VCE = 3.5 V and different temperatures as indicated.

Fig. 12
Fig. 12

Base-emitter voltage corresponding to collector-current breakdown as function of temperature between 10 and 80°C. The data is acquired on different device sizes ranging from 4 to 10 µm.

Fig. 13
Fig. 13

Dependency of (a) VBE, (b) IC and (c) Pout on IB and different VCE as indicated for T-VCSELs with asymmetric (solid lines) and symmetric (dashed lines) current injection according to design B-200-nm and A-200-nm, respectively.

Fig. 14
Fig. 14

Dependency of (a) VBE, (b) IC and (c) Pout on IB for a T-VCSEL with buried tunnel current injection according to design C-200-nm (solid lines) compared to the A-200-nm design based on pn-blocking layer confinement (dashed lines). The vertical dashed lines spanning over all Figs. indicate the threshold currents.

Tables (2)

Tables Icon

Table 1 Epitaxial layer structure for the pnp-blocking layer designs (Design A and Design B)

Tables Icon

Table 2 Epitaxial layer structure for the BTJ current confinement design (Design C)

Metrics