Abstract

We show the possibility of controlling the optical properties of Nd3+ laser ions by using different configurations of metallic nanoparticles (NPs) deposited on a solid state gain medium. In particular, we analyze the effect of two different silver NP arrangements on the optical properties of Nd3+ ions in LiNbO3: a two-dimensional (2D) high density and disordered Ag NP distribution and a one-dimensional (1D) long single chain of Ag NPs. We demonstrate that while the 2D disordered distribution produces a thermal quenching of the Nd3+ luminescence, the 1D single chain leads to the enhancement of the fluorescence from the 4F3/2 metastable state. The experimental data are theoretically interpreted by taking into account the different character, radiative or non-radiative, of the localized surface plasmonic modes supported by the Ag nanoparticle distributions at the excitation wavelength. The results point out the capabilities of rare earth ions as optical tools to probe the local plasmonic fields and are relevant to determine the optimal configuration of metallic arrays to improve the performance of potential rare earth ion based sub-micrometer lasers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silver nanoparticle enhanced 2.7 µm luminescence in Er3+-doped bismuth germanate glasses

Xiaomeng Jia, Mengling Xia, Yinsheng Xu, Lei Yang, Yan Zhang, Mingming Li, and Shixun Dai
Opt. Mater. Express 8(6) 1625-1632 (2018)

Plasmon enhanced near-infrared quantum cutting and simulation analysis of β-NaYF4:Tb3+, Yb3+ doped with Ag nanoparticles

Biao Zheng, Lin Lin, Zhuohong Feng, Zhipeng Yu, Zhezhe Wang, Senyuan Xu, and Zhiqiang Zheng
Opt. Mater. Express 7(1) 224-230 (2017)

Plasmon enhanced near-infrared downconversion luminescence of β-NaYF4:Pr3+ nanoparticles by high-ordered Ag nanopillar arrays with tunable nanogaps

Biao Zheng, Jun Wang, Lin Lin, Jinquan Hong, Lili Huang, Yuliang Li, Zhuohong Feng, Zhezhe Wang, and Zhiqiang Zheng
Opt. Mater. Express 8(11) 3401-3409 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1), 1–21 (2013).
    [Crossref]
  2. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
    [Crossref] [PubMed]
  3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  5. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
    [Crossref] [PubMed]
  6. E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd³⁺-doped periodically poled LiNbO₃ laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
    [Crossref] [PubMed]
  7. T. Y. Fan, A. Cordova-plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 3(1), 140–148 (1986).
    [Crossref]
  8. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16(910), 795–799 (2004).
    [Crossref]
  9. P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective plasmon enhancement of the 1.08 μm Nd3+ laser Stark transition by tailoring Ag nanoparticles chains on a PPLN Y-cut,” Nano Lett. 13(10), 4931–4936 (2013).
    [Crossref] [PubMed]
  10. V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
    [Crossref]
  11. Y. Sun, B. S. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
    [Crossref]
  12. Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence,” J. Appl. Phys. 109(10), 104302 (2011).
    [Crossref]
  13. F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56(24), 15873–15884 (1997).
    [Crossref]
  14. F. J. G. de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 17 (2002).
  15. S. V. Kalinin and D. A. Bonnell, “Local potential and polarization screening on ferroelectric surfaces,” Phys. Rev. B 63(12), 125411 (2001).
    [Crossref]
  16. H. Loro, M. Voda, F. Jaque, J. G. Sole, and J. E. M. Santiuste, “Polarized absorption of Nd3+ in LiNbO3: efect of MgO codoping,” J. Appl. Phys. 77(11), 5929–5935 (1995).
    [Crossref]
  17. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
    [Crossref]
  18. D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116(19), 10723–10733 (2012).
    [Crossref]
  19. K. Lau, I. Staude, Y. Liu, H. Chen, Z. R. Li, and D. N. Neshev, “Ferroelectric domain engineered photochemical deposition for area-selectable broadband enhancement of quantum dot photoluminescence,” Adv. Opt. Mater. 1(10), 720–723 (2013).
    [Crossref]
  20. E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin., doi:.
    [Crossref]
  21. R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
    [Crossref] [PubMed]
  22. C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
    [Crossref]
  23. Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
    [Crossref] [PubMed]

2014 (1)

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

2013 (5)

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd³⁺-doped periodically poled LiNbO₃ laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective plasmon enhancement of the 1.08 μm Nd3+ laser Stark transition by tailoring Ag nanoparticles chains on a PPLN Y-cut,” Nano Lett. 13(10), 4931–4936 (2013).
[Crossref] [PubMed]

K. Lau, I. Staude, Y. Liu, H. Chen, Z. R. Li, and D. N. Neshev, “Ferroelectric domain engineered photochemical deposition for area-selectable broadband enhancement of quantum dot photoluminescence,” Adv. Opt. Mater. 1(10), 720–723 (2013).
[Crossref]

2012 (3)

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116(19), 10723–10733 (2012).
[Crossref]

2011 (2)

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
[Crossref]

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence,” J. Appl. Phys. 109(10), 104302 (2011).
[Crossref]

2009 (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

2008 (1)

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

2007 (1)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

2004 (1)

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16(910), 795–799 (2004).
[Crossref]

2002 (1)

F. J. G. de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 17 (2002).

2001 (1)

S. V. Kalinin and D. A. Bonnell, “Local potential and polarization screening on ferroelectric surfaces,” Phys. Rev. B 63(12), 125411 (2001).
[Crossref]

1999 (1)

V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
[Crossref]

1997 (1)

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56(24), 15873–15884 (1997).
[Crossref]

1995 (1)

H. Loro, M. Voda, F. Jaque, J. G. Sole, and J. E. M. Santiuste, “Polarized absorption of Nd3+ in LiNbO3: efect of MgO codoping,” J. Appl. Phys. 77(11), 5929–5935 (1995).
[Crossref]

1986 (1)

Aizpurua, J.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56(24), 15873–15884 (1997).
[Crossref]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin., doi:.
[Crossref]

Alvarez, T.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16(910), 795–799 (2004).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Baumberg, J. J.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

Bausá, L. E.

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective plasmon enhancement of the 1.08 μm Nd3+ laser Stark transition by tailoring Ag nanoparticles chains on a PPLN Y-cut,” Nano Lett. 13(10), 4931–4936 (2013).
[Crossref] [PubMed]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd³⁺-doped periodically poled LiNbO₃ laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin., doi:.
[Crossref]

Beitner, J.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bermudez, V.

V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
[Crossref]

Bonnell, D. A.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16(910), 795–799 (2004).
[Crossref]

S. V. Kalinin and D. A. Bonnell, “Local potential and polarization screening on ferroelectric surfaces,” Phys. Rev. B 63(12), 125411 (2001).
[Crossref]

Byer, R. L.

Chen, H.

K. Lau, I. Staude, Y. Liu, H. Chen, Z. R. Li, and D. N. Neshev, “Ferroelectric domain engineered photochemical deposition for area-selectable broadband enhancement of quantum dot photoluminescence,” Adv. Opt. Mater. 1(10), 720–723 (2013).
[Crossref]

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Cordova-plaza, A.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

de Abajo, F. J. G.

F. J. G. de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 17 (2002).

de las Heras, C.

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective plasmon enhancement of the 1.08 μm Nd3+ laser Stark transition by tailoring Ag nanoparticles chains on a PPLN Y-cut,” Nano Lett. 13(10), 4931–4936 (2013).
[Crossref] [PubMed]

Dieguez, E.

V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
[Crossref]

Digonnet, M. J. F.

Dridi, M.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Edwardson, S. P.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Eller, B. S.

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
[Crossref]

Esteban, R.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

Fan, T. Y.

Ferris, J. H.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16(910), 795–799 (2004).
[Crossref]

Gaponenko, S. V.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116(19), 10723–10733 (2012).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56(24), 15873–15884 (1997).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Glukhov, Y. F.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116(19), 10723–10733 (2012).
[Crossref]

Govorov, A. O.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

Guo, W.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Guzatov, D. V.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116(19), 10723–10733 (2012).
[Crossref]

Hamm, J. M.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hess, O.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Howie, A.

F. J. G. de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 17 (2002).

Hu, Z. H.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16(910), 795–799 (2004).
[Crossref]

Jaque, F.

H. Loro, M. Voda, F. Jaque, J. G. Sole, and J. E. M. Santiuste, “Polarized absorption of Nd3+ in LiNbO3: efect of MgO codoping,” J. Appl. Phys. 77(11), 5929–5935 (1995).
[Crossref]

Kalinin, S. V.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16(910), 795–799 (2004).
[Crossref]

S. V. Kalinin and D. A. Bonnell, “Local potential and polarization screening on ferroelectric surfaces,” Phys. Rev. B 63(12), 125411 (2001).
[Crossref]

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Lau, K.

K. Lau, I. Staude, Y. Liu, H. Chen, Z. R. Li, and D. N. Neshev, “Ferroelectric domain engineered photochemical deposition for area-selectable broadband enhancement of quantum dot photoluminescence,” Adv. Opt. Mater. 1(10), 720–723 (2013).
[Crossref]

Lei, X. J.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16(910), 795–799 (2004).
[Crossref]

Li, L.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Li, Z. R.

K. Lau, I. Staude, Y. Liu, H. Chen, Z. R. Li, and D. N. Neshev, “Ferroelectric domain engineered photochemical deposition for area-selectable broadband enhancement of quantum dot photoluminescence,” Adv. Opt. Mater. 1(10), 720–723 (2013).
[Crossref]

Liu, Y.

K. Lau, I. Staude, Y. Liu, H. Chen, Z. R. Li, and D. N. Neshev, “Ferroelectric domain engineered photochemical deposition for area-selectable broadband enhancement of quantum dot photoluminescence,” Adv. Opt. Mater. 1(10), 720–723 (2013).
[Crossref]

Liu, Z.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Loro, H.

H. Loro, M. Voda, F. Jaque, J. G. Sole, and J. E. M. Santiuste, “Polarized absorption of Nd3+ in LiNbO3: efect of MgO codoping,” J. Appl. Phys. 77(11), 5929–5935 (1995).
[Crossref]

Luk’yanchuk, B. S.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Lunevich, A. Y.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116(19), 10723–10733 (2012).
[Crossref]

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maier, S. A.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Molina, P.

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd³⁺-doped periodically poled LiNbO₃ laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective plasmon enhancement of the 1.08 μm Nd3+ laser Stark transition by tailoring Ag nanoparticles chains on a PPLN Y-cut,” Nano Lett. 13(10), 4931–4936 (2013).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin., doi:.
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nemanich, R. J.

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
[Crossref]

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence,” J. Appl. Phys. 109(10), 104302 (2011).
[Crossref]

Neshev, D. N.

K. Lau, I. Staude, Y. Liu, H. Chen, Z. R. Li, and D. N. Neshev, “Ferroelectric domain engineered photochemical deposition for area-selectable broadband enhancement of quantum dot photoluminescence,” Adv. Opt. Mater. 1(10), 720–723 (2013).
[Crossref]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Odom, T. W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Oulton, R. F.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Pendry, J. B.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Plaza, J. L.

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd³⁺-doped periodically poled LiNbO₃ laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective plasmon enhancement of the 1.08 μm Nd3+ laser Stark transition by tailoring Ag nanoparticles chains on a PPLN Y-cut,” Nano Lett. 13(10), 4931–4936 (2013).
[Crossref] [PubMed]

Ramírez, M. O.

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective plasmon enhancement of the 1.08 μm Nd3+ laser Stark transition by tailoring Ag nanoparticles chains on a PPLN Y-cut,” Nano Lett. 13(10), 4931–4936 (2013).
[Crossref] [PubMed]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd³⁺-doped periodically poled LiNbO₃ laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin., doi:.
[Crossref]

Richardson, H. H.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

Sánchez-García, L.

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin., doi:.
[Crossref]

Santiuste, J. E. M.

H. Loro, M. Voda, F. Jaque, J. G. Sole, and J. E. M. Santiuste, “Polarized absorption of Nd3+ in LiNbO3: efect of MgO codoping,” J. Appl. Phys. 77(11), 5929–5935 (1995).
[Crossref]

Schatz, G. C.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Serrano, M. D.

V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
[Crossref]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Shao, R.

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16(910), 795–799 (2004).
[Crossref]

Shaw, H. J.

Sole, J. G.

H. Loro, M. Voda, F. Jaque, J. G. Sole, and J. E. M. Santiuste, “Polarized absorption of Nd3+ in LiNbO3: efect of MgO codoping,” J. Appl. Phys. 77(11), 5929–5935 (1995).
[Crossref]

Sorger, V. J.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Stankevich, V. V.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116(19), 10723–10733 (2012).
[Crossref]

Staude, I.

K. Lau, I. Staude, Y. Liu, H. Chen, Z. R. Li, and D. N. Neshev, “Ferroelectric domain engineered photochemical deposition for area-selectable broadband enhancement of quantum dot photoluminescence,” Adv. Opt. Mater. 1(10), 720–723 (2013).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Sun, Y.

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence,” J. Appl. Phys. 109(10), 104302 (2011).
[Crossref]

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
[Crossref]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Taylor, R. W.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

Tsakmakidis, K. L.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Tserkezis, C.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin., doi:.
[Crossref]

Vaschenko, S. V.

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116(19), 10723–10733 (2012).
[Crossref]

Voda, M.

H. Loro, M. Voda, F. Jaque, J. G. Sole, and J. E. M. Santiuste, “Polarized absorption of Nd3+ in LiNbO3: efect of MgO codoping,” J. Appl. Phys. 77(11), 5929–5935 (1995).
[Crossref]

Wang, Z. B.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Watkins, K. G.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Whitehead, D. J.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Yraola, E.

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd³⁺-doped periodically poled LiNbO₃ laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective plasmon enhancement of the 1.08 μm Nd3+ laser Stark transition by tailoring Ag nanoparticles chains on a PPLN Y-cut,” Nano Lett. 13(10), 4931–4936 (2013).
[Crossref] [PubMed]

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin., doi:.
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, X.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Adv. Mater. (2)

S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16(910), 795–799 (2004).
[Crossref]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd³⁺-doped periodically poled LiNbO₃ laser crystal,” Adv. Mater. 25(6), 910–915 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

K. Lau, I. Staude, Y. Liu, H. Chen, Z. R. Li, and D. N. Neshev, “Ferroelectric domain engineered photochemical deposition for area-selectable broadband enhancement of quantum dot photoluminescence,” Adv. Opt. Mater. 1(10), 720–723 (2013).
[Crossref]

J. Appl. Phys. (3)

H. Loro, M. Voda, F. Jaque, J. G. Sole, and J. E. M. Santiuste, “Polarized absorption of Nd3+ in LiNbO3: efect of MgO codoping,” J. Appl. Phys. 77(11), 5929–5935 (1995).
[Crossref]

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photo-induced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys. 110(8), 084303 (2011).
[Crossref]

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence,” J. Appl. Phys. 109(10), 104302 (2011).
[Crossref]

J. Chem. Phys. (1)

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

J. Cryst. Growth (1)

V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116(19), 10723–10733 (2012).
[Crossref]

Langmuir (1)

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28(24), 8881–8890 (2012).
[Crossref] [PubMed]

Laser Photon. Rev. (1)

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

Nano Lett. (1)

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective plasmon enhancement of the 1.08 μm Nd3+ laser Stark transition by tailoring Ag nanoparticles chains on a PPLN Y-cut,” Nano Lett. 13(10), 4931–4936 (2013).
[Crossref] [PubMed]

Nano Today (1)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

Nat. Mater. (1)

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Nature (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Part. Part. Syst. Charact. (1)

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Part. Part. Syst. Charact. 31(1), 152–160 (2014).
[Crossref]

Phys. Rev. B (3)

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56(24), 15873–15884 (1997).
[Crossref]

F. J. G. de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 17 (2002).

S. V. Kalinin and D. A. Bonnell, “Local potential and polarization screening on ferroelectric surfaces,” Phys. Rev. B 63(12), 125411 (2001).
[Crossref]

Other (1)

E. Yraola, L. Sánchez-García, C. Tserkezis, P. Molina, M. O. Ramírez, J. Aizpurua, and L. E. Bausá, “Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles,” J. Lumin., doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a). SEM image of the domain selective distribution of Ag NPs obtained on a Nd3+ doped PPLN-Y cut crystal after 20 minutes of UV illumination. A 2D disordered distribution of Ag NPs is preferentially deposited on the positive polar face. (Inset) High resolution image showing a detail of the Ag NP distribution on domain surfaces and the presence of an Ag nanowire parallel to the ferroelectric c-axis of the crystal on a domain wall. The white scale bar corresponds to 500 nm. (b) Unpolarized emission spectra corresponding to the 4F3/24I11/2 laser transition of Nd3+ ions collected from regions of low (blue) and high (red) density of Ag NPs. The vertical red line indicates the 4F3/2 (R2) →4I11/2 (Y1) thermal transition of Nd3+ ions in LiNbO3. (c,d) Micro-fluorescence spatial maps of the integrated Nd3+ emission intensity from 1050 to 1070 nm (spectral region I) and from 1082 to 1087 nm (spectral region II), respectively. (e) Schematics of the energy level diagram of Nd3+ ions showing the relevant transitions and the crystal field splitting of the 4F3/2 and the 4I11/2 states. (f) SEM image of one isolated Ag NP chain deposited on the domain wall surface after 2 minutes of UV illumination. (g) Micro-fluorescence spatial map of a single Ag NP chain integrating the 4F3/24I11/2 emission spectrum.
Fig. 2
Fig. 2 (a) Absorption and (b) extinction cross section spectra of straight chains of N 50 nm Ag NPs separated by 2 nm gaps calculated for incident light polarized along the chains. Relevant spectra for N = 2, 3 4 and 15 are shown in color. The different order of magnitude between the absorption and the extinction spectra shows the radiative character of the long-wavelength mode for a single long chain of 15 NPs. A scheme of the NP chains and the polarization of the electric field, E, is represented on top.
Fig. 3
Fig. 3 (a-c) Schematics of the analyzed Ag NP arrangements. As illustrated in panel (b) the 2D disordered distribution of Ag NPs can be interpreted as a distribution of short linear chains randomly oriented (colored in yellow, blue and green for N = 2, 3 and 4, respectively. (d) SEM image of 2D disordered distribution of Ag NPs. Silver NPs are grouped as short chains with colored boxes. (e) SEM image of a single 1D long chain. White bar corresponds to a 100nm length. (f) Effective average absorption calculated for the 2D disordered Ag Np distribution (black spectrum) and for the long single chain (red spectrum). The incident wavelength (488 nm, coinciding with the 4I9/24G9/2 + 2K13/2 transition of Nd3+ ions) is marked by a green vertical line.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α e f f ( λ ) = N 1 A N   χ N cos θ N A b s N ( λ )  

Metrics