Abstract

The backscattering noises introduced by Rayleigh and stimulated Brillouin scattering have been experimentally studied by means of their spectrum broadening, the scattering power variation and their impacts on upstream signals with different transmission fiber lengths and incident powers in a single-fiber bidirectional passive optical network (PON) communication system. The results show that both spontaneous scattering and simulated scattering can take place. The power and spectrum of backscattering noises are determined by the downstream launch power, laser linewidth and transmission fiber length. With the transmission length increasing, the power of backscattering noises gets higher, the spectrum of the backscattering noise broadens and the simulated threshold power decreases. The backscattering noise can beat with uplink light to modulate envelop of upstream signal resulting in degradation of BER greatly. Under the condition of one single channel for the second next generation PON (NG-PON2), the fiber length is 40km and downstream launch power is up to 11dBm. At this time, the backscattering noises are easy to be stimulated and the scattering power rises up from −20dBm to 10dBm, which can overwhelm the US signal. The spectrum of the optical beat interference noise also rises up with fiber length, which causes the uplink’s BER degradation. The experimental results are significant for mitigation of backscattering noises under the condition of bidirectional PONs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bidirectional long-reach PON using Kramers-Kronig-based receiver for Rayleigh Backscattering noise and SSBI interference elimination

Di Li, Quan Yu, Lei Deng, Liang Huo, Songnian Fu, Ming Tang, Mengfan Cheng, Minming Zhang, and Deming Liu
Opt. Express 26(15) 19020-19036 (2018)

An experimental demonstration for carrier reused bidirectional PON system with adaptive modulation DDO-OFDM downstream and QPSK upstream signals

Jhih-Heng Yan, You-Wei Chen, Kuan-Heng Shen, and Kai-Ming Feng
Opt. Express 21(23) 28154-28166 (2013)

REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang
Opt. Express 20(19) 21089-21100 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Feng, J. Ge, S. Xiao, and M. P. Fok, “Suppression of Rayleigh backscattering noise using cascaded-SOA and microwave photonic filter for 10 Gb/s loop-back WDM-PON,” Opt. Express 22(10), 11770–11777 (2014).
    [Crossref] [PubMed]
  2. Q. Guo and A. V. Tran, “Mitigation of Rayleigh noise and dispersion in REAM-based WDM-PON using spectrum-shaping codes,” Opt. Express 20(26), B452–B461 (2012).
    [Crossref] [PubMed]
  3. R. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G-OCDMA-PON System With an Asymmetric Structure Using a Single Multi-Port and Sampled SSFBG Encoder/Decoders,” J. Lightwave Technol. 32(6), 1132–1143 (2014).
    [Crossref]
  4. D. Nesset, “NG-PON2 technology and standards [Invited],” J. Lightwave Technol. 33(5), 1136–1143 (2015).
    [Crossref]
  5. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time and wavelength division multiplexed passive optical network (TWDM-PON) for next generation PON stage 2 (NG-PON2),” J. Lightwave Technol. 31(4), 587–593 (2013).
    [Crossref]
  6. ITU-T G.989.1, 40-Gigabit-capable passive optical networks (NG-PON2): General requirements [S], (2013)
  7. ITU-T G.984.1, Gigabit-capable passive optical networks (GPON): General characteristics [S], (2008).
  8. S. Wu, A. Yariv, H. Blauvelt, and N. Kwong, “Theoretical and experimental investigation of conversion of phase noise to intensity noise by Rayleigh scattering in optical fibers,” Appl. Phys. Lett. 59(10), 1156–1158 (1991).
    [Crossref]
  9. P. Gysel and R. K. Staubli, “Spectral Properties of Rayleigh Backscattered Light from Single-Mode Fibers Caused by a Modulated Probe Signal,” J. Lightwave Technol. 8(12), 1792–1798 (1990).
    [Crossref]
  10. J. M. Mackintosh and B. Culshaw, “Analysis and observation of coupling ratio dependence of Rayleigh backscattering noise in a fiber optic gyroscope,” J. Lightwave Technol. 7(9), 1323–1328 (1989).
    [Crossref]
  11. Y. Takushima and K. Kikuchi, “Observation of spectral gain hole burning and modulation instability in a Brillouin fiber amplifier,” in Proceedings of Lasers and Electro-Optics Society 1999 12th Annual Meeting(LEOS 99.)1,58 (1999).
    [Crossref]
  12. T. H. Wood, R. A. Linke, B. L. Kasper, and E. C. Carr, “Observation of Coherent Rayleigh Noise in Single-Source Bidirectional Optical Fiber Systems,” J. Lightwave Technol. 6(2), 346–352 (1988).
    [Crossref]
  13. W. K. Burns and R. P. Moeller, “Rayleigh Backscattering in a Fiber Gyroscope with Limited Coherence Sources,” J. Lightwave Technol. 1(2), 381–386 (1983).
    [Crossref]
  14. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref] [PubMed]
  15. R. K. Staubli and P. Gysel, “Crosstalk Penalties Due to Coherent Rayleigh Noise in Bidirectional Optical Communication Systems,” J. Lightwave Technol. 9(3), 375–380 (1991).
    [Crossref]
  16. T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18(22), 22958–22963 (2010).
    [Crossref] [PubMed]
  17. O. Okusaga, J. Cahill, A. Docherty, W. Zhou, and C. R. Menyuk, “Guided entropy mode Rayleigh scattering in optical fibers,” Opt. Lett. 37(4), 683–685 (2012).
    [Crossref] [PubMed]
  18. O. Okusaga, J. P. Cahill, A. Docherty, C. R. Menyuk, and W. Zhou, “Spontaneous inelastic Rayleigh scattering in optical fibers,” Opt. Lett. 38(4), 549–551 (2013).
    [Crossref] [PubMed]
  19. H. W. Hu and H. Anis, “Degradation of Bi-Directional Single Fiber Transmission in WDM-PON Due to Beat Noise,” J. Lightwave Technol. 26(8), 870–881 (2008).
    [Crossref]
  20. M. Ferrario, L. Marazzi, P. Boffi, A. Righetti, and M. Martinelli, “Impact of Rayleigh backscattering on Stimulated Brillouin Scattering threshold evaluation for 10 Gb/s NRZ-OOK signals,” Opt. Express 17(20), 18110–18115 (2009).
    [Crossref] [PubMed]
  21. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon. 2(1), 1–59 (2010).
    [Crossref]
  22. E. Brinkmeyer, “Forward-backward transmission in birefringent single-mode fibers: interpretation of polarization-sensitive measurements,” Opt. Lett. 6(11), 575–577 (1981).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

2013 (3)

2012 (2)

2010 (2)

2009 (1)

2008 (1)

1991 (2)

R. K. Staubli and P. Gysel, “Crosstalk Penalties Due to Coherent Rayleigh Noise in Bidirectional Optical Communication Systems,” J. Lightwave Technol. 9(3), 375–380 (1991).
[Crossref]

S. Wu, A. Yariv, H. Blauvelt, and N. Kwong, “Theoretical and experimental investigation of conversion of phase noise to intensity noise by Rayleigh scattering in optical fibers,” Appl. Phys. Lett. 59(10), 1156–1158 (1991).
[Crossref]

1990 (1)

P. Gysel and R. K. Staubli, “Spectral Properties of Rayleigh Backscattered Light from Single-Mode Fibers Caused by a Modulated Probe Signal,” J. Lightwave Technol. 8(12), 1792–1798 (1990).
[Crossref]

1989 (1)

J. M. Mackintosh and B. Culshaw, “Analysis and observation of coupling ratio dependence of Rayleigh backscattering noise in a fiber optic gyroscope,” J. Lightwave Technol. 7(9), 1323–1328 (1989).
[Crossref]

1988 (1)

T. H. Wood, R. A. Linke, B. L. Kasper, and E. C. Carr, “Observation of Coherent Rayleigh Noise in Single-Source Bidirectional Optical Fiber Systems,” J. Lightwave Technol. 6(2), 346–352 (1988).
[Crossref]

1983 (1)

W. K. Burns and R. P. Moeller, “Rayleigh Backscattering in a Fiber Gyroscope with Limited Coherence Sources,” J. Lightwave Technol. 1(2), 381–386 (1983).
[Crossref]

1981 (1)

Anis, H.

Bao, X.

Blauvelt, H.

S. Wu, A. Yariv, H. Blauvelt, and N. Kwong, “Theoretical and experimental investigation of conversion of phase noise to intensity noise by Rayleigh scattering in optical fibers,” Appl. Phys. Lett. 59(10), 1156–1158 (1991).
[Crossref]

Boffi, P.

Brinkmeyer, E.

Burns, W. K.

W. K. Burns and R. P. Moeller, “Rayleigh Backscattering in a Fiber Gyroscope with Limited Coherence Sources,” J. Lightwave Technol. 1(2), 381–386 (1983).
[Crossref]

Cahill, J.

Cahill, J. P.

Carr, E. C.

T. H. Wood, R. A. Linke, B. L. Kasper, and E. C. Carr, “Observation of Coherent Rayleigh Noise in Single-Source Bidirectional Optical Fiber Systems,” J. Lightwave Technol. 6(2), 346–352 (1988).
[Crossref]

Chen, L.

Chowdhury, D.

Culshaw, B.

J. M. Mackintosh and B. Culshaw, “Analysis and observation of coupling ratio dependence of Rayleigh backscattering noise in a fiber optic gyroscope,” J. Lightwave Technol. 7(9), 1323–1328 (1989).
[Crossref]

Docherty, A.

Dong, L.

Dong, Y.

Effenberger, F.

Feng, H.

Ferrario, M.

Fok, M. P.

Ge, J.

Guo, Q.

Gysel, P.

R. K. Staubli and P. Gysel, “Crosstalk Penalties Due to Coherent Rayleigh Noise in Bidirectional Optical Communication Systems,” J. Lightwave Technol. 9(3), 375–380 (1991).
[Crossref]

P. Gysel and R. K. Staubli, “Spectral Properties of Rayleigh Backscattered Light from Single-Mode Fibers Caused by a Modulated Probe Signal,” J. Lightwave Technol. 8(12), 1792–1798 (1990).
[Crossref]

Hu, H. W.

Kasper, B. L.

T. H. Wood, R. A. Linke, B. L. Kasper, and E. C. Carr, “Observation of Coherent Rayleigh Noise in Single-Source Bidirectional Optical Fiber Systems,” J. Lightwave Technol. 6(2), 346–352 (1988).
[Crossref]

Kitayama, K.

Kobyakov, A.

Kodama, T.

Kwong, N.

S. Wu, A. Yariv, H. Blauvelt, and N. Kwong, “Theoretical and experimental investigation of conversion of phase noise to intensity noise by Rayleigh scattering in optical fibers,” Appl. Phys. Lett. 59(10), 1156–1158 (1991).
[Crossref]

Liang, H.

Linke, R. A.

T. H. Wood, R. A. Linke, B. L. Kasper, and E. C. Carr, “Observation of Coherent Rayleigh Noise in Single-Source Bidirectional Optical Fiber Systems,” J. Lightwave Technol. 6(2), 346–352 (1988).
[Crossref]

Luo, Y.

Ma, Y.

Mackintosh, J. M.

J. M. Mackintosh and B. Culshaw, “Analysis and observation of coupling ratio dependence of Rayleigh backscattering noise in a fiber optic gyroscope,” J. Lightwave Technol. 7(9), 1323–1328 (1989).
[Crossref]

Marazzi, L.

Martinelli, M.

Matsumoto, R.

Menyuk, C. R.

Moeller, R. P.

W. K. Burns and R. P. Moeller, “Rayleigh Backscattering in a Fiber Gyroscope with Limited Coherence Sources,” J. Lightwave Technol. 1(2), 381–386 (1983).
[Crossref]

Nesset, D.

Nomura, R.

Okusaga, O.

Omichi, K.

Peng, G.

Qian, Y.

Righetti, A.

Sauer, M.

Shimizu, S.

Staubli, R. K.

R. K. Staubli and P. Gysel, “Crosstalk Penalties Due to Coherent Rayleigh Noise in Bidirectional Optical Communication Systems,” J. Lightwave Technol. 9(3), 375–380 (1991).
[Crossref]

P. Gysel and R. K. Staubli, “Spectral Properties of Rayleigh Backscattered Light from Single-Mode Fibers Caused by a Modulated Probe Signal,” J. Lightwave Technol. 8(12), 1792–1798 (1990).
[Crossref]

Tran, A. V.

Wada, N.

Wood, T. H.

T. H. Wood, R. A. Linke, B. L. Kasper, and E. C. Carr, “Observation of Coherent Rayleigh Noise in Single-Source Bidirectional Optical Fiber Systems,” J. Lightwave Technol. 6(2), 346–352 (1988).
[Crossref]

Wu, S.

S. Wu, A. Yariv, H. Blauvelt, and N. Kwong, “Theoretical and experimental investigation of conversion of phase noise to intensity noise by Rayleigh scattering in optical fibers,” Appl. Phys. Lett. 59(10), 1156–1158 (1991).
[Crossref]

Xiao, S.

Yan, X.

Yariv, A.

S. Wu, A. Yariv, H. Blauvelt, and N. Kwong, “Theoretical and experimental investigation of conversion of phase noise to intensity noise by Rayleigh scattering in optical fibers,” Appl. Phys. Lett. 59(10), 1156–1158 (1991).
[Crossref]

Zhou, W.

Zhou, X.

Zhu, T.

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

S. Wu, A. Yariv, H. Blauvelt, and N. Kwong, “Theoretical and experimental investigation of conversion of phase noise to intensity noise by Rayleigh scattering in optical fibers,” Appl. Phys. Lett. 59(10), 1156–1158 (1991).
[Crossref]

J. Lightwave Technol. (9)

P. Gysel and R. K. Staubli, “Spectral Properties of Rayleigh Backscattered Light from Single-Mode Fibers Caused by a Modulated Probe Signal,” J. Lightwave Technol. 8(12), 1792–1798 (1990).
[Crossref]

J. M. Mackintosh and B. Culshaw, “Analysis and observation of coupling ratio dependence of Rayleigh backscattering noise in a fiber optic gyroscope,” J. Lightwave Technol. 7(9), 1323–1328 (1989).
[Crossref]

T. H. Wood, R. A. Linke, B. L. Kasper, and E. C. Carr, “Observation of Coherent Rayleigh Noise in Single-Source Bidirectional Optical Fiber Systems,” J. Lightwave Technol. 6(2), 346–352 (1988).
[Crossref]

W. K. Burns and R. P. Moeller, “Rayleigh Backscattering in a Fiber Gyroscope with Limited Coherence Sources,” J. Lightwave Technol. 1(2), 381–386 (1983).
[Crossref]

R. K. Staubli and P. Gysel, “Crosstalk Penalties Due to Coherent Rayleigh Noise in Bidirectional Optical Communication Systems,” J. Lightwave Technol. 9(3), 375–380 (1991).
[Crossref]

Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time and wavelength division multiplexed passive optical network (TWDM-PON) for next generation PON stage 2 (NG-PON2),” J. Lightwave Technol. 31(4), 587–593 (2013).
[Crossref]

H. W. Hu and H. Anis, “Degradation of Bi-Directional Single Fiber Transmission in WDM-PON Due to Beat Noise,” J. Lightwave Technol. 26(8), 870–881 (2008).
[Crossref]

R. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G-OCDMA-PON System With an Asymmetric Structure Using a Single Multi-Port and Sampled SSFBG Encoder/Decoders,” J. Lightwave Technol. 32(6), 1132–1143 (2014).
[Crossref]

D. Nesset, “NG-PON2 technology and standards [Invited],” J. Lightwave Technol. 33(5), 1136–1143 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Other (3)

Y. Takushima and K. Kikuchi, “Observation of spectral gain hole burning and modulation instability in a Brillouin fiber amplifier,” in Proceedings of Lasers and Electro-Optics Society 1999 12th Annual Meeting(LEOS 99.)1,58 (1999).
[Crossref]

ITU-T G.989.1, 40-Gigabit-capable passive optical networks (NG-PON2): General requirements [S], (2013)

ITU-T G.984.1, Gigabit-capable passive optical networks (GPON): General characteristics [S], (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The backscattering in fiber of one single TWDM-PON channel for NG-PON2 [4].
Fig. 2
Fig. 2 The experiment setup for detection of backscattering noise.
Fig. 3
Fig. 3 The measured backscattering power vs. DS incident power.
Fig. 4
Fig. 4 The spectra of backscattering noise (RB only) vs. fiber length at 3dBm DS incident power.
Fig. 5
Fig. 5 Schematic diagram for analyzing influence of scattering noises.
Fig. 6
Fig. 6 The US BER vs. Received Power for various Fiber Lengths at 3dBm DS incident power.
Fig. 7
Fig. 7 The oscillograph of US signal modulated by OBI noise.
Fig. 8
Fig. 8 The bandwidths of the modulated frequency of US signal envelop vs. fiber length.
Fig. 9
Fig. 9 The US BER vs. Received Power for various DS Incident Power for 20km fiber length.
Fig. 10
Fig. 10 The US BER vs. Received Power for various Fiber Lengths at 6dBm DS incident power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I= ( E us + E RB + E sbs ) 2 = ( E us ) 2 + ( E RB ) 2 + ( E sbs ) 2 +2 ( E us · E RB ) +2 ( E us · E sbs ) +2 ( E RB · E sbs )
S(ω)= I b 2 [ 2πδ(ω)+ 2Δω Δ ω 2 + ω 2 ]

Metrics