Abstract

Localized surface plasmon (LSP)-enhanced ultraviolet light-emitting diodes (LEDs) based on a Au/MgO/ZnO metal/insulator/semi- conductor heterostructure were fabricated by embedding Ag nanoparticles (Ag-NPs) into MgO dielectric layer. A ~6-fold electroluminescence (EL) enhancement was achieved from the Ag-NPs decorated device. Time-resolved spectroscopy studies, as well as analogue simulation and theoretical estimation based on experimental data, reveal that the internal quantum efficiency and light extraction efficiency of the heterojunction LED are increased ~3-fold and ~2-fold, respectively, as a result of the introduction of Ag LSPs. This result indicates that the observed EL enhancement originates from a combined effect of both exciton-LSP coupling and photon-LSP coupling.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized surface plasmon-enhanced near-ultraviolet emission from InGaN/GaN light-emitting diodes using silver and platinum nanoparticles

Sang-Hyun Hong, Chu-Young Cho, Sang-Jun Lee, Sang-Youp Yim, Wantae Lim, Sung-Tae Kim, and Seong-Ju Park
Opt. Express 21(3) 3138-3144 (2013)

Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles

Jiangyong Pan, Jing Chen, Dewei Zhao, Qianqian Huang, Qasim Khan, Xiang Liu, Zhi Tao, Zichen Zhang, and Wei Lei
Opt. Express 24(2) A33-A43 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
    [Crossref] [PubMed]
  2. H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
    [Crossref]
  3. J. Dai, C. X. Xu, and X. W. Sun, “ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
    [Crossref] [PubMed]
  4. M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: Hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
    [Crossref]
  5. C.-Y. Lee, J.-Y. Wang, Y. Chou, M.-Y. Liu, W.-F. Su, Y.-F. Chen, and C.-F. Lin, “Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly (3,4-ethylenedioxythiophene)-poly (styrene-sulfonate) heterojunction,” J. Appl. Phys. 107(3), 034310 (2010).
    [Crossref]
  6. H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
    [Crossref] [PubMed]
  7. C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99(6), 063115 (2011).
    [Crossref]
  8. X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
    [Crossref]
  9. C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, “ZnO ultraviolet random laser diode on metal copper substrate,” Opt. Express 22(14), 16731–16737 (2014).
    [Crossref] [PubMed]
  10. P. Chen, X. Ma, and D. Yang, “Ultraviolet electroluminescence from ZnO/p-Si heterojunctions,” J. Appl. Phys. 101(5), 053103 (2007).
    [Crossref]
  11. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref] [PubMed]
  12. X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6(1), 199 (2011).
    [Crossref] [PubMed]
  13. B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
    [Crossref]
  14. L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
    [Crossref]
  15. S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
    [Crossref]
  16. S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon,” J. Appl. Phys. 112(1), 013112 (2012).
    [Crossref]
  17. Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, L.-G. Zhang, and D.-Z. Shen, “Localized surface plasmon enhanced light-emitting devices,” J. Mater. Chem. 22(19), 9481–9484 (2012).
    [Crossref]
  18. W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
    [Crossref]
  19. W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
    [Crossref] [PubMed]
  20. C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
    [Crossref] [PubMed]
  21. Q. Qiao, C.-X. Shan, J. Zheng, H. Zhu, S.-F. Yu, B.-H. Li, Y. Jia, and D.-Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
    [Crossref] [PubMed]
  22. T. H. Seo, A. H. Park, G. H. Lee, M. J. Kim, and E.-K. Suh, “Efficiency enhancement of nanorod green light emitting diodes employing silver nanowire-decorated graphene electrode as current spreading layer,” J. Phys. D Appl. Phys. 47(31), 315102 (2014).
    [Crossref]
  23. J.-H. Min, M. Son, S.-Y. Bae, J.-Y. Lee, J. Yun, M.-J. Maeng, D.-G. Kwon, Y. Park, J.-I. Shim, M.-H. Ham, and D.-S. Lee, “Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes,” Opt. Express 22(S4Suppl 4), A1040–A1050 (2014).
    [Crossref] [PubMed]
  24. P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett. 89(11), 111112 (2006).
    [Crossref]
  25. C. Y. Liu, H. Y. Xu, Y. Sun, C. Zhang, J. G. Ma, and Y. C. Liu, “Ultraviolet electroluminescence from Au/MgO/MgxZn1-xO heterojunction diodes and the observation of Zn-rich cluster emission,” J. Lumin. 148, 116–120 (2014).
    [Crossref]
  26. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  27. L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids,” J. Am. Chem. Soc. 113(8), 2826–2833 (1991).
    [Crossref]
  28. J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88(18), 182112 (2006).
    [Crossref]
  29. Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
    [PubMed]
  30. E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
    [Crossref]
  31. W. F. Yang, Y. N. Xie, R. Y. Liao, J. Sun, Z. Y. Wu, L. M. Wong, S. J. Wang, C. F. Wang, A. Y. S. Lee, and H. Gong, “Enhancement of bandgap emission of Pt-capped MgZnO films: Important role of light extraction versus exciton-plasmon coupling,” Opt. Express 20(13), 14556–14563 (2012).
    [Crossref] [PubMed]
  32. N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
    [Crossref]
  33. Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
    [Crossref] [PubMed]
  34. V. A. Fonoberov and A. A. Balandin, “Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect,” Phys. Rev. B 70(19), 195410 (2004).
    [Crossref]
  35. D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, “Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study,” J. Phys. Chem. 91(14), 3789–3798 (1987).
    [Crossref]
  36. W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminescence study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
    [Crossref]
  37. S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
    [Crossref] [PubMed]
  38. R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
    [Crossref]
  39. R. S. Ground, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton-polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2–3), 331–337 (2008).
  40. M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

2015 (1)

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref] [PubMed]

2014 (5)

T. H. Seo, A. H. Park, G. H. Lee, M. J. Kim, and E.-K. Suh, “Efficiency enhancement of nanorod green light emitting diodes employing silver nanowire-decorated graphene electrode as current spreading layer,” J. Phys. D Appl. Phys. 47(31), 315102 (2014).
[Crossref]

Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
[PubMed]

C. Y. Liu, H. Y. Xu, Y. Sun, C. Zhang, J. G. Ma, and Y. C. Liu, “Ultraviolet electroluminescence from Au/MgO/MgxZn1-xO heterojunction diodes and the observation of Zn-rich cluster emission,” J. Lumin. 148, 116–120 (2014).
[Crossref]

J.-H. Min, M. Son, S.-Y. Bae, J.-Y. Lee, J. Yun, M.-J. Maeng, D.-G. Kwon, Y. Park, J.-I. Shim, M.-H. Ham, and D.-S. Lee, “Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes,” Opt. Express 22(S4Suppl 4), A1040–A1050 (2014).
[Crossref] [PubMed]

C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, “ZnO ultraviolet random laser diode on metal copper substrate,” Opt. Express 22(14), 16731–16737 (2014).
[Crossref] [PubMed]

2013 (3)

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Q. Qiao, C.-X. Shan, J. Zheng, H. Zhu, S.-F. Yu, B.-H. Li, Y. Jia, and D.-Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

2012 (6)

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon,” J. Appl. Phys. 112(1), 013112 (2012).
[Crossref]

Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, L.-G. Zhang, and D.-Z. Shen, “Localized surface plasmon enhanced light-emitting devices,” J. Mater. Chem. 22(19), 9481–9484 (2012).
[Crossref]

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: Hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

W. F. Yang, Y. N. Xie, R. Y. Liao, J. Sun, Z. Y. Wu, L. M. Wong, S. J. Wang, C. F. Wang, A. Y. S. Lee, and H. Gong, “Enhancement of bandgap emission of Pt-capped MgZnO films: Important role of light extraction versus exciton-plasmon coupling,” Opt. Express 20(13), 14556–14563 (2012).
[Crossref] [PubMed]

2011 (5)

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99(6), 063115 (2011).
[Crossref]

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
[Crossref]

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6(1), 199 (2011).
[Crossref] [PubMed]

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

2010 (3)

C.-Y. Lee, J.-Y. Wang, Y. Chou, M.-Y. Liu, W.-F. Su, Y.-F. Chen, and C.-F. Lin, “Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly (3,4-ethylenedioxythiophene)-poly (styrene-sulfonate) heterojunction,” J. Appl. Phys. 107(3), 034310 (2010).
[Crossref]

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

2009 (2)

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminescence study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

2008 (5)

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[Crossref]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[Crossref] [PubMed]

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[Crossref]

R. S. Ground, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton-polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2–3), 331–337 (2008).

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[Crossref]

2007 (2)

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[Crossref]

P. Chen, X. Ma, and D. Yang, “Ultraviolet electroluminescence from ZnO/p-Si heterojunctions,” J. Appl. Phys. 101(5), 053103 (2007).
[Crossref]

2006 (3)

Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
[Crossref] [PubMed]

P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett. 89(11), 111112 (2006).
[Crossref]

J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88(18), 182112 (2006).
[Crossref]

2005 (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

2004 (2)

V. A. Fonoberov and A. A. Balandin, “Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect,” Phys. Rev. B 70(19), 195410 (2004).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

1991 (1)

L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids,” J. Am. Chem. Soc. 113(8), 2826–2833 (1991).
[Crossref]

1987 (1)

D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, “Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study,” J. Phys. Chem. 91(14), 3789–3798 (1987).
[Crossref]

Anderson, M. A.

L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids,” J. Am. Chem. Soc. 113(8), 2826–2833 (1991).
[Crossref]

André, R.

M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Avrutin, V.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[Crossref]

Baas, A.

M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

Bae, S.-Y.

Baek, J.-H.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

Bahnemann, D. W.

D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, “Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study,” J. Phys. Chem. 91(14), 3789–3798 (1987).
[Crossref]

Balandin, A. A.

V. A. Fonoberov and A. A. Balandin, “Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect,” Phys. Rev. B 70(19), 195410 (2004).
[Crossref]

Bellessa, J.

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Benndorf, G.

R. S. Ground, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton-polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2–3), 331–337 (2008).

Byeon, C. C.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[Crossref]

Carusotto, I.

M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

Chen, P.

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[Crossref]

P. Chen, X. Ma, and D. Yang, “Ultraviolet electroluminescence from ZnO/p-Si heterojunctions,” J. Appl. Phys. 101(5), 053103 (2007).
[Crossref]

P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett. 89(11), 111112 (2006).
[Crossref]

Chen, Y.-F.

C.-Y. Lee, J.-Y. Wang, Y. Chou, M.-Y. Liu, W.-F. Su, Y.-F. Chen, and C.-F. Lin, “Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly (3,4-ethylenedioxythiophene)-poly (styrene-sulfonate) heterojunction,” J. Appl. Phys. 107(3), 034310 (2010).
[Crossref]

Chernyak, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Cho, C.-H.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[Crossref]

Choi, S.

Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
[PubMed]

Chou, Y.

C.-Y. Lee, J.-Y. Wang, Y. Chou, M.-Y. Liu, W.-F. Su, Y.-F. Chen, and C.-F. Lin, “Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly (3,4-ethylenedioxythiophene)-poly (styrene-sulfonate) heterojunction,” J. Appl. Phys. 107(3), 034310 (2010).
[Crossref]

Choy, K.-L.

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

Chu, P. K.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6(1), 199 (2011).
[Crossref] [PubMed]

Chu, S.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Czekalla, C.

R. S. Ground, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton-polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2–3), 331–337 (2008).

Dai, J.

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

Dang, L. S.

M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

Deo, M.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: Hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Dong, J. J.

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon,” J. Appl. Phys. 112(1), 013112 (2012).
[Crossref]

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
[Crossref]

Dwir, B.

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[Crossref]

Fan, X.

Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
[Crossref] [PubMed]

Fan, X.-W.

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Fonoberov, V. A.

V. A. Fonoberov and A. A. Balandin, “Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect,” Phys. Rev. B 70(19), 195410 (2004).
[Crossref]

Gao, H. L.

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon,” J. Appl. Phys. 112(1), 013112 (2012).
[Crossref]

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
[Crossref]

Gao, M.

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminescence study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Gao, P.

Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
[PubMed]

Gong, H.

Ground, R. S.

R. S. Ground, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton-polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2–3), 331–337 (2008).

Grundmann, M.

R. S. Ground, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton-polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2–3), 331–337 (2008).

Gu, S. L.

J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88(18), 182112 (2006).
[Crossref]

Gu, X.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6(1), 199 (2011).
[Crossref] [PubMed]

Ham, M.-H.

Hannoyer, B.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: Hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Hatzopoulos, Z.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[Crossref] [PubMed]

Hochmuth, H.

R. S. Ground, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton-polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2–3), 331–337 (2008).

Hoffmann, M. R.

D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, “Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study,” J. Phys. Chem. 91(14), 3789–3798 (1987).
[Crossref]

Homeyer, E.

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Hou, X.

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

Jang, L.-W.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

Jeon, D.-W.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

Jeon, J.-W.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

Jia, Y.

Q. Qiao, C.-X. Shan, J. Zheng, H. Zhu, S.-F. Yu, B.-H. Li, Y. Jia, and D.-Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Jog, J.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: Hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Ju, J.-W.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

Kapon, E.

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[Crossref]

Kasprzak, J.

M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

Kim, B.-H.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[Crossref]

Kim, J. S.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[Crossref]

Kim, M.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

Kim, M. J.

T. H. Seo, A. H. Park, G. H. Lee, M. J. Kim, and E.-K. Suh, “Efficiency enhancement of nanorod green light emitting diodes employing silver nanowire-decorated graphene electrode as current spreading layer,” J. Phys. D Appl. Phys. 47(31), 315102 (2014).
[Crossref]

Kong, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Konstantinidis, G.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[Crossref] [PubMed]

Kormann, C.

D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, “Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study,” J. Phys. Chem. 91(14), 3789–3798 (1987).
[Crossref]

Kwon, D.-G.

Kwon, M.-K.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[Crossref]

Lagoudakis, K.

M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

Lee, A. Y. S.

Lee, C.-Y.

C.-Y. Lee, J.-Y. Wang, Y. Chou, M.-Y. Liu, W.-F. Su, Y.-F. Chen, and C.-F. Lin, “Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly (3,4-ethylenedioxythiophene)-poly (styrene-sulfonate) heterojunction,” J. Appl. Phys. 107(3), 034310 (2010).
[Crossref]

Lee, D.-S.

Lee, G. H.

T. H. Seo, A. H. Park, G. H. Lee, M. J. Kim, and E.-K. Suh, “Efficiency enhancement of nanorod green light emitting diodes employing silver nanowire-decorated graphene electrode as current spreading layer,” J. Phys. D Appl. Phys. 47(31), 315102 (2014).
[Crossref]

Lee, I.-H.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

Lee, J.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[Crossref]

Lee, J.-Y.

Lee, S.-J.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

Li, B.-H.

Q. Qiao, C.-X. Shan, J. Zheng, H. Zhu, S.-F. Yu, B.-H. Li, Y. Jia, and D.-Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, L.-G. Zhang, and D.-Z. Shen, “Localized surface plasmon enhanced light-emitting devices,” J. Mater. Chem. 22(19), 9481–9484 (2012).
[Crossref]

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Li, D.

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[Crossref]

Li, L.

Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
[PubMed]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Li, W.

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminescence study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Li, X. H.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99(6), 063115 (2011).
[Crossref]

Liao, R. Y.

Lin, C.-F.

C.-Y. Lee, J.-Y. Wang, Y. Chou, M.-Y. Liu, W.-F. Su, Y.-F. Chen, and C.-F. Lin, “Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly (3,4-ethylenedioxythiophene)-poly (styrene-sulfonate) heterojunction,” J. Appl. Phys. 107(3), 034310 (2010).
[Crossref]

Lin, Y.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Liu, C. Y.

C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, “ZnO ultraviolet random laser diode on metal copper substrate,” Opt. Express 22(14), 16731–16737 (2014).
[Crossref] [PubMed]

C. Y. Liu, H. Y. Xu, Y. Sun, C. Zhang, J. G. Ma, and Y. C. Liu, “Ultraviolet electroluminescence from Au/MgO/MgxZn1-xO heterojunction diodes and the observation of Zn-rich cluster emission,” J. Lumin. 148, 116–120 (2014).
[Crossref]

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99(6), 063115 (2011).
[Crossref]

Liu, D.

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminescence study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Liu, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Liu, M.-Y.

C.-Y. Lee, J.-Y. Wang, Y. Chou, M.-Y. Liu, W.-F. Su, Y.-F. Chen, and C.-F. Lin, “Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly (3,4-ethylenedioxythiophene)-poly (styrene-sulfonate) heterojunction,” J. Appl. Phys. 107(3), 034310 (2010).
[Crossref]

Liu, S. M.

J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88(18), 182112 (2006).
[Crossref]

Liu, W.

J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88(18), 182112 (2006).
[Crossref]

Liu, W. Z.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

Liu, X.

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon,” J. Appl. Phys. 112(1), 013112 (2012).
[Crossref]

Liu, Y.

Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
[Crossref] [PubMed]

Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
[Crossref] [PubMed]

Liu, Y. C.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref] [PubMed]

C. Y. Liu, H. Y. Xu, Y. Sun, C. Zhang, J. G. Ma, and Y. C. Liu, “Ultraviolet electroluminescence from Au/MgO/MgxZn1-xO heterojunction diodes and the observation of Zn-rich cluster emission,” J. Lumin. 148, 116–120 (2014).
[Crossref]

C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, “ZnO ultraviolet random laser diode on metal copper substrate,” Opt. Express 22(14), 16731–16737 (2014).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99(6), 063115 (2011).
[Crossref]

Lorenz, M.

R. S. Ground, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton-polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2–3), 331–337 (2008).

Lu, W. D.

Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
[PubMed]

Lu, Y.

Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
[Crossref] [PubMed]

Lu, Y.-M.

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Ma, J. G.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref] [PubMed]

C. Y. Liu, H. Y. Xu, Y. Sun, C. Zhang, J. G. Ma, and Y. C. Liu, “Ultraviolet electroluminescence from Au/MgO/MgxZn1-xO heterojunction diodes and the observation of Zn-rich cluster emission,” J. Lumin. 148, 116–120 (2014).
[Crossref]

C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, “ZnO ultraviolet random laser diode on metal copper substrate,” Opt. Express 22(14), 16731–16737 (2014).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99(6), 063115 (2011).
[Crossref]

Ma, X.

P. Chen, X. Ma, and D. Yang, “Ultraviolet electroluminescence from ZnO/p-Si heterojunctions,” J. Appl. Phys. 101(5), 053103 (2007).
[Crossref]

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[Crossref]

P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett. 89(11), 111112 (2006).
[Crossref]

Maeng, M.-J.

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Marvinney, C. E.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref] [PubMed]

Mattila, P.

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Min, J.-H.

Moreb, M.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: Hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Moret, N.

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[Crossref]

Morkoc, H.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[Crossref]

Mu, R.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99(6), 063115 (2011).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Mun, J.-S.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nykanen, H.

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Oberli, D. Y.

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[Crossref]

Ogale, S.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: Hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Oksanen, J.

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Özgür, Ü.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[Crossref]

Pan, X.

Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
[PubMed]

Park, A. H.

T. H. Seo, A. H. Park, G. H. Lee, M. J. Kim, and E.-K. Suh, “Efficiency enhancement of nanorod green light emitting diodes employing silver nanowire-decorated graphene electrode as current spreading layer,” J. Phys. D Appl. Phys. 47(31), 315102 (2014).
[Crossref]

Park, S.-J.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[Crossref]

Park, T.-Y.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[Crossref]

Park, Y.

Pelekanos, N. T.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[Crossref] [PubMed]

Peng, L.-M.

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminescence study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Plédran, B. D.

M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

Polyakov, A. Y.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

Qiao, Q.

Q. Qiao, C.-X. Shan, J. Zheng, H. Zhu, S.-F. Yu, B.-H. Li, Y. Jia, and D.-Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, L.-G. Zhang, and D.-Z. Shen, “Localized surface plasmon enhanced light-emitting devices,” J. Mater. Chem. 22(19), 9481–9484 (2012).
[Crossref]

Qiu, T.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6(1), 199 (2011).
[Crossref] [PubMed]

Ren, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Rheinländer, B.

R. S. Ground, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton-polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2–3), 331–337 (2008).

Richard, M.

M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

Rudra, A.

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[Crossref]

Sadi, T.

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Sauvage, X.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: Hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Savvidis, P. G.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[Crossref] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Seo, T. H.

T. H. Seo, A. H. Park, G. H. Lee, M. J. Kim, and E.-K. Suh, “Efficiency enhancement of nanorod green light emitting diodes employing silver nanowire-decorated graphene electrode as current spreading layer,” J. Phys. D Appl. Phys. 47(31), 315102 (2014).
[Crossref]

Shan, C.-X.

Q. Qiao, C.-X. Shan, J. Zheng, H. Zhu, S.-F. Yu, B.-H. Li, Y. Jia, and D.-Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, L.-G. Zhang, and D.-Z. Shen, “Localized surface plasmon enhanced light-emitting devices,” J. Mater. Chem. 22(19), 9481–9484 (2012).
[Crossref]

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Shao, C.

Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
[Crossref] [PubMed]

Shen, D.

Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
[Crossref] [PubMed]

Shen, D.-Z.

Q. Qiao, C.-X. Shan, J. Zheng, H. Zhu, S.-F. Yu, B.-H. Li, Y. Jia, and D.-Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, L.-G. Zhang, and D.-Z. Shen, “Localized surface plasmon enhanced light-emitting devices,” J. Mater. Chem. 22(19), 9481–9484 (2012).
[Crossref]

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Shi, Y.

J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88(18), 182112 (2006).
[Crossref]

Shim, J.-I.

Shimada, R.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[Crossref]

Shinde, D.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: Hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Si, F. T.

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon,” J. Appl. Phys. 112(1), 013112 (2012).
[Crossref]

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
[Crossref]

Son, M.

Sopanen, M.

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Spanhel, L.

L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids,” J. Am. Chem. Soc. 113(8), 2826–2833 (1991).
[Crossref]

Su, W.-F.

C.-Y. Lee, J.-Y. Wang, Y. Chou, M.-Y. Liu, W.-F. Su, Y.-F. Chen, and C.-F. Lin, “Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly (3,4-ethylenedioxythiophene)-poly (styrene-sulfonate) heterojunction,” J. Appl. Phys. 107(3), 034310 (2010).
[Crossref]

Suh, E.-K.

T. H. Seo, A. H. Park, G. H. Lee, M. J. Kim, and E.-K. Suh, “Efficiency enhancement of nanorod green light emitting diodes employing silver nanowire-decorated graphene electrode as current spreading layer,” J. Phys. D Appl. Phys. 47(31), 315102 (2014).
[Crossref]

Suihkonen, S.

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Sun, J.

Sun, S. S.

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
[Crossref]

Sun, S. Y.

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

Sun, X. W.

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

Sun, Y.

C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, “ZnO ultraviolet random laser diode on metal copper substrate,” Opt. Express 22(14), 16731–16737 (2014).
[Crossref] [PubMed]

C. Y. Liu, H. Y. Xu, Y. Sun, C. Zhang, J. G. Ma, and Y. C. Liu, “Ultraviolet electroluminescence from Au/MgO/MgxZn1-xO heterojunction diodes and the observation of Zn-rich cluster emission,” J. Lumin. 148, 116–120 (2014).
[Crossref]

Symonds, C.

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Tang, Z.-K.

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Tao, Y.

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
[Crossref]

Tappertzhofen, S.

Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
[PubMed]

Tong, Y.

Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
[Crossref] [PubMed]

Tsintzos, S. I.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[Crossref] [PubMed]

Tulkki, J.

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Tuomisto, F.

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

Valov, I.

Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
[PubMed]

Wang, C. F.

Wang, C. L.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

Wang, G.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Wang, J. N.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

Wang, J. X.

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon,” J. Appl. Phys. 112(1), 013112 (2012).
[Crossref]

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
[Crossref]

Wang, J.-Y.

C.-Y. Lee, J.-Y. Wang, Y. Chou, M.-Y. Liu, W.-F. Su, Y.-F. Chen, and C.-F. Lin, “Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly (3,4-ethylenedioxythiophene)-poly (styrene-sulfonate) heterojunction,” J. Appl. Phys. 107(3), 034310 (2010).
[Crossref]

Wang, S. J.

Waser, R.

Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
[PubMed]

Wong, L. M.

Wouters, M.

M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

Wu, Z. Y.

Xie, J.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[Crossref]

Xie, S.

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminescence study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Xie, Y. N.

Xu, C.

Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
[Crossref] [PubMed]

Xu, C. X.

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

Xu, H. Y.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref] [PubMed]

C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, “ZnO ultraviolet random laser diode on metal copper substrate,” Opt. Express 22(14), 16731–16737 (2014).
[Crossref] [PubMed]

C. Y. Liu, H. Y. Xu, Y. Sun, C. Zhang, J. G. Ma, and Y. C. Liu, “Ultraviolet electroluminescence from Au/MgO/MgxZn1-xO heterojunction diodes and the observation of Zn-rich cluster emission,” J. Lumin. 148, 116–120 (2014).
[Crossref]

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99(6), 063115 (2011).
[Crossref]

Yang, D.

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[Crossref]

P. Chen, X. Ma, and D. Yang, “Ultraviolet electroluminescence from ZnO/p-Si heterojunctions,” J. Appl. Phys. 101(5), 053103 (2007).
[Crossref]

P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett. 89(11), 111112 (2006).
[Crossref]

Yang, J.-K.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

Yang, W. F.

Yang, Y.

Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
[PubMed]

Yao, B.

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Ye, J. D.

J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88(18), 182112 (2006).
[Crossref]

Yengantiwar, A.

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: Hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Yin, Z. G.

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon,” J. Appl. Phys. 112(1), 013112 (2012).
[Crossref]

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
[Crossref]

Yu, S.-F.

Q. Qiao, C.-X. Shan, J. Zheng, H. Zhu, S.-F. Yu, B.-H. Li, Y. Jia, and D.-Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Yun, J.

Zhang, C.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref] [PubMed]

C. Y. Liu, H. Y. Xu, Y. Sun, C. Zhang, J. G. Ma, and Y. C. Liu, “Ultraviolet electroluminescence from Au/MgO/MgxZn1-xO heterojunction diodes and the observation of Zn-rich cluster emission,” J. Lumin. 148, 116–120 (2014).
[Crossref]

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

Zhang, J.

Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
[Crossref] [PubMed]

Zhang, J.-Y.

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Zhang, L. X.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

Zhang, L.-G.

Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, L.-G. Zhang, and D.-Z. Shen, “Localized surface plasmon enhanced light-emitting devices,” J. Mater. Chem. 22(19), 9481–9484 (2012).
[Crossref]

Zhang, R.

J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88(18), 182112 (2006).
[Crossref]

Zhang, S. G.

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon,” J. Appl. Phys. 112(1), 013112 (2012).
[Crossref]

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
[Crossref]

Zhang, W.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6(1), 199 (2011).
[Crossref] [PubMed]

Zhang, X.

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminescence study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

Zhang, X. T.

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99(6), 063115 (2011).
[Crossref]

Zhang, X. W.

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon,” J. Appl. Phys. 112(1), 013112 (2012).
[Crossref]

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
[Crossref]

Zhang, Y.

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[Crossref]

Zhang, Z.-Z.

Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, L.-G. Zhang, and D.-Z. Shen, “Localized surface plasmon enhanced light-emitting devices,” J. Mater. Chem. 22(19), 9481–9484 (2012).
[Crossref]

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Zhao, D.-X.

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Zhao, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Zheng, J.

Q. Qiao, C.-X. Shan, J. Zheng, H. Zhu, S.-F. Yu, B.-H. Li, Y. Jia, and D.-Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, L.-G. Zhang, and D.-Z. Shen, “Localized surface plasmon enhanced light-emitting devices,” J. Mater. Chem. 22(19), 9481–9484 (2012).
[Crossref]

Zheng, Y. D.

J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88(18), 182112 (2006).
[Crossref]

Zhou, W.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Zhu, H.

Q. Qiao, C.-X. Shan, J. Zheng, H. Zhu, S.-F. Yu, B.-H. Li, Y. Jia, and D.-Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

Zhu, S. M.

J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88(18), 182112 (2006).
[Crossref]

Adv. Funct. Mater. (1)

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22(13), 2728–2734 (2012).
[Crossref]

Adv. Mater. (4)

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[Crossref]

H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, and Z.-K. Tang, “Ultralow-threshold laser realized in zinc oxide,” Adv. Mater. 21(16), 1613–1617 (2009).
[Crossref]

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

H. Zhu, C.-X. Shan, J.-Y. Zhang, Z.-Z. Zhang, B.-H. Li, D.-X. Zhao, B. Yao, D.-Z. Shen, X.-W. Fan, Z.-K. Tang, X. Hou, and K.-L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater. 22(16), 1877–1881 (2010).
[Crossref] [PubMed]

Appl. Phys. B (1)

R. S. Ground, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton-polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2–3), 331–337 (2008).

Appl. Phys. Lett. (10)

W. Li, M. Gao, X. Zhang, D. Liu, L.-M. Peng, and S. Xie, “Microphotoluminescence study of exciton polaritons guided in ZnO nanorods,” Appl. Phys. Lett. 95(17), 173109 (2009).
[Crossref]

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[Crossref]

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99(6), 063115 (2011).
[Crossref]

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[Crossref]

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, “Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes,” Appl. Phys. Lett. 99(18), 181116 (2011).
[Crossref]

W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett. 101(14), 142101 (2012).
[Crossref]

P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett. 89(11), 111112 (2006).
[Crossref]

J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett. 88(18), 182112 (2006).
[Crossref]

E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings,” Appl. Phys. Lett. 102(8), 081110 (2013).
[Crossref]

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[Crossref]

Int. J. Nanotechnol. (1)

M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. André, B. D. Plédran, and L. S. Dang, “Exciton-polariton Bose-Einstein condensation: advances and issues,” Int. J. Nanotechnol. 7, 668–685 (2010).

J. Am. Chem. Soc. (1)

L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids,” J. Am. Chem. Soc. 113(8), 2826–2833 (1991).
[Crossref]

J. Appl. Phys. (4)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon,” J. Appl. Phys. 112(1), 013112 (2012).
[Crossref]

P. Chen, X. Ma, and D. Yang, “Ultraviolet electroluminescence from ZnO/p-Si heterojunctions,” J. Appl. Phys. 101(5), 053103 (2007).
[Crossref]

C.-Y. Lee, J.-Y. Wang, Y. Chou, M.-Y. Liu, W.-F. Su, Y.-F. Chen, and C.-F. Lin, “Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly (3,4-ethylenedioxythiophene)-poly (styrene-sulfonate) heterojunction,” J. Appl. Phys. 107(3), 034310 (2010).
[Crossref]

J. Lumin. (1)

C. Y. Liu, H. Y. Xu, Y. Sun, C. Zhang, J. G. Ma, and Y. C. Liu, “Ultraviolet electroluminescence from Au/MgO/MgxZn1-xO heterojunction diodes and the observation of Zn-rich cluster emission,” J. Lumin. 148, 116–120 (2014).
[Crossref]

J. Mater. Chem. (2)

M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb, and S. Ogale, “Cu2O/ZnO hetero-nanobrush: Hierarchical assembly, field emission and photocatalytic properties,” J. Mater. Chem. 22(33), 17055–17062 (2012).
[Crossref]

Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, L.-G. Zhang, and D.-Z. Shen, “Localized surface plasmon enhanced light-emitting devices,” J. Mater. Chem. 22(19), 9481–9484 (2012).
[Crossref]

J. Phys. Chem. (1)

D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, “Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study,” J. Phys. Chem. 91(14), 3789–3798 (1987).
[Crossref]

J. Phys. Chem. B (1)

Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth and optical properties of faceted hexagonal ZnO nanotubes,” J. Phys. Chem. B 110(30), 14714–14718 (2006).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

T. H. Seo, A. H. Park, G. H. Lee, M. J. Kim, and E.-K. Suh, “Efficiency enhancement of nanorod green light emitting diodes employing silver nanowire-decorated graphene electrode as current spreading layer,” J. Phys. D Appl. Phys. 47(31), 315102 (2014).
[Crossref]

Nanoscale (3)

W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, “Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration,” Nanoscale 5(18), 8634–8639 (2013).
[Crossref] [PubMed]

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref] [PubMed]

Q. Qiao, C.-X. Shan, J. Zheng, H. Zhu, S.-F. Yu, B.-H. Li, Y. Jia, and D.-Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6(1), 199 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nat. Commun. 5(4232), 4232 (2014).
[PubMed]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Nature (1)

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

V. A. Fonoberov and A. A. Balandin, “Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect,” Phys. Rev. B 70(19), 195410 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Energy-band alignment of Au/MgO/ZnO/n-Si heterostructure under forward bias. (b) Schematic diagram of LSP-enhanced Au/Ag-NPs@MgO/ZnO MIS heterojunction LED.
Fig. 2
Fig. 2 (a) Scanning electron microscope image of the Ag-NPs layer. (b) The extinction spectrum of Ag-NPs coated on MgO film (blue solid line) and a typical PL spectrum of ZnO film (red dash-dot line). (c) PL spectra of bare ZnO film, Ag/ZnO film and Ag-NPs/MgO/ZnO composite films with different MgO spacer layer thicknesses. (d) The variations of UV emission enhancement ratio with the MgO thickness. The 325 nm line of a He-Cd laser was employed as the excitation source.
Fig. 3
Fig. 3 (a) J-V curves of the MIS junction LEDs with (blue line) and without (red line) Ag-NPs. (b) A log-log plot of the J-V characteristic of the pristine LED under forward bias, which illustrates the single carrier injection process of space-charge-limited current model.
Fig. 4
Fig. 4 (a) EL spectra of the LEDs with (blue line) and without (red line) Ag-NPs under the same ICD of 44 A/cm2. (b) The variations of integrated UV EL intensity with the ICD for the devices with and without Ag-NPs. (c) EL enhancement ratio of the two LEDs as a function of the ICD.
Fig. 5
Fig. 5 (a) FDTD simulation of the electrical field distribution in the LSP-enhanced LED. (b) Room-temperature TR-PL spectra of MgO/ZnO composite films with (blue circle) and without (red square) Ag-NPs; the monitoring wavelength is 380 nm, and the solid lines are the fits to a bi-exponential decay model. The inset table gives the lifetimes of fast and slow components, as well as the effective lifetimes. (c) Arrhenius plots of the normalized integrated UV-PL intensity of MgO/ZnO composite films with (blue circle) and without (red square) Ag-NPs.
Fig. 6
Fig. 6 Schematic diagram showing the EL enhancement mechanism of Au/Ag-NPs@MgO/ZnO MIS heterojunction LEDs. The k r a d and k n o n represent the radiative and nonradiative recombination processes, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 τ e f f = k r a d + k n o n
1 τ e f f = k r a d + k n o n + k s p
η I Q E = k r a d k r a d + k n o n
η I Q E = k r a d + C ' e x t k s p k r a d + k n o n + k s p

Metrics