Abstract

We propose a long range, high precision optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a CW pump laser with moderate power and a section of fiber, which has a zero dispersion wavelength near the laser’s central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR due to its ultra-wide-band chaotic behavior, and mm-scale spatial resolution is demonstrated. Then we analyze the key factors limiting the operational range of such an OTDR, e. g., integral Rayleigh backscattering and the fiber loss, which degrades the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. Finally, we experimentally demonstrate a correlation OTDR with 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of theoretical analysis.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser

Limeng Zhang, Biwei Pan, Guangcan Chen, Dan Lu, and Lingjuan Zhao
Appl. Opt. 56(4) 1253-1256 (2017)

Extended-range optical time domain–reflectometry system at 1.65??µm based on delayed Raman amplification

Huai H. Kee, Gareth P. Lees, and Trevor P. Newson
Opt. Lett. 23(5) 349-351 (1998)

Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals

Zhenyang Ding, X. Steve Yao, Tiegen Liu, Yang Du, Kun Liu, Qun Han, Zhuo Meng, and Hongxin Chen
Opt. Express 20(27) 28319-28329 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
    [Crossref]
  2. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref] [PubMed]
  3. F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
    [Crossref]
  4. Y. Takushima and Y. C. Chung, “Optical reflectometry based on correlation detection and its application to the in-service monitoring of WDM passive optical network,” Opt. Express 15(9), 5318–5326 (2007).
    [Crossref] [PubMed]
  5. Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometry utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
    [Crossref]
  6. L. Xia, D. Huang, J. Xu, and D. Liu, “Simultaneous and precise fault locating in WDM-PON by the generation of optical wideband chaos,” Opt. Lett. 38(19), 3762–3764 (2013).
    [Crossref] [PubMed]
  7. A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by uitilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
    [Crossref]
  8. H. K. Shim, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Correlation-based OTDR for in-service monitoring of 64-split TDM PON,” Opt. Express 20(5), 4921–4926 (2012).
    [Crossref] [PubMed]
  9. L. Sandstrom, D. Joffe, G. Bekken, J. Brooks, K. Schneider, and R. Goodson, “High performance, in-service correlation OTDR,” in Optical Fiber Communication Conference, (Optical Society of America, 2013), paper OW3G. 3.
    [Crossref]
  10. J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
    [Crossref]
  11. T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor laser subject to optical injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
    [Crossref]
  12. K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broadband chaos generated by an optoelectronic oscillator,” Phys. Rev. Lett. 104(11), 113901 (2010).
    [Crossref] [PubMed]
  13. G. L. Shentu, Q. C. Sun, X. Jiang, X. D. Wang, J. S. Pelc, M. M. Fejer, Q. Zhang, and J. W. Pan, “217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector,” Opt. Express 21(21), 24674–24679 (2013).
    [Crossref] [PubMed]
  14. M. G. Herráez, S. M. López, P. Corredera, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226(1-6), 323–328 (2003).
    [Crossref]
  15. A. E. El-Taher, J. D. Ania-Castañón, V. Karalekas, and P. Harper, “High efficiency supercontinuum generation using ultra-long Raman fiber cavities,” Opt. Express 17(20), 17909–17915 (2009).
    [Crossref] [PubMed]
  16. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29(18), 2163–2165 (2004).
    [Crossref] [PubMed]
  17. H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirror’s reflectivity in forward-pumped random fiber laser,” Opt. Express 23(2), 1421–1427 (2015).
    [Crossref] [PubMed]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 5th edition, 2012).
  19. Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
    [Crossref] [PubMed]
  20. M. A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, 2005).

2015 (1)

2014 (1)

2013 (2)

2012 (2)

2010 (1)

K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broadband chaos generated by an optoelectronic oscillator,” Phys. Rev. Lett. 104(11), 113901 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometry utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

2007 (1)

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (1)

M. G. Herráez, S. M. López, P. Corredera, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226(1-6), 323–328 (2003).
[Crossref]

2002 (1)

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
[Crossref]

1994 (1)

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor laser subject to optical injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[Crossref]

Abeeluck, A. K.

Alsing, P. M.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor laser subject to optical injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[Crossref]

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Ania-Castañón, J. D.

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Callan, K. E.

K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broadband chaos generated by an optoelectronic oscillator,” Phys. Rev. Lett. 104(11), 113901 (2010).
[Crossref] [PubMed]

Cho, K. Y.

Chung, Y. C.

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Corredera, P.

M. G. Herráez, S. M. López, P. Corredera, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226(1-6), 323–328 (2003).
[Crossref]

M. G. Herráez, S. M. López, P. Corredera, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226(1-6), 323–328 (2003).
[Crossref]

Davis, P.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

El-Taher, A. E.

Fan, M.

Fan, M. Q.

Fejer, M. M.

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Gao, Z.

K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broadband chaos generated by an optoelectronic oscillator,” Phys. Rev. Lett. 104(11), 113901 (2010).
[Crossref] [PubMed]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Gauthier, D. J.

K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broadband chaos generated by an optoelectronic oscillator,” Phys. Rev. Lett. 104(11), 113901 (2010).
[Crossref] [PubMed]

Gavrielides, A.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor laser subject to optical injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[Crossref]

Harper, P.

Headley, C.

Hernanz, M. L.

M. G. Herráez, S. M. López, P. Corredera, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226(1-6), 323–328 (2003).
[Crossref]

Herráez, M. G.

M. G. Herráez, S. M. López, P. Corredera, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226(1-6), 323–328 (2003).
[Crossref]

Hirano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Horche, P. R.

M. G. Herráez, S. M. López, P. Corredera, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226(1-6), 323–328 (2003).
[Crossref]

Huang, D.

Illing, L.

K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broadband chaos generated by an optoelectronic oscillator,” Phys. Rev. Lett. 104(11), 113901 (2010).
[Crossref] [PubMed]

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Jiang, X.

Jørgensen, C. G.

Karalekas, V.

Kovanis, V.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor laser subject to optical injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[Crossref]

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Li, J.

Lin, F. Y.

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

Liu, D.

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor laser subject to optical injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[Crossref]

López, S. M.

M. G. Herráez, S. M. López, P. Corredera, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226(1-6), 323–328 (2003).
[Crossref]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Ohtsubo, J.

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
[Crossref]

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Pan, J. W.

Pelc, J. S.

Peng, F.

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Rao, Y.

Rao, Y. J.

Schöll, E.

K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broadband chaos generated by an optoelectronic oscillator,” Phys. Rev. Lett. 104(11), 113901 (2010).
[Crossref] [PubMed]

Shentu, G. L.

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Shim, H. K.

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Simpson, T. B.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor laser subject to optical injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[Crossref]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Sun, Q. C.

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Takushima, Y.

Uchida, A.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Wang, A.

Wang, A. B.

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometry utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, B.

Wang, B. J.

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometry utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, N.

Wang, X. D.

Wang, Y.

Wang, Y. C.

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometry utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, Z.

Wang, Z. N.

Wu, H.

Xia, L.

Xu, J.

Yang, Y.

Yoshimori, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Yoshimura, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Zeng, J. J.

Zhang, L.

Zhang, M.

Zhang, Q.

Zhang, W.

Zhou, Y.

Appl. Phys. Lett. (1)

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor laser subject to optical injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometry utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

M. G. Herráez, S. M. López, P. Corredera, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226(1-6), 323–328 (2003).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broadband chaos generated by an optoelectronic oscillator,” Phys. Rev. Lett. 104(11), 113901 (2010).
[Crossref] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 5th edition, 2012).

L. Sandstrom, D. Joffe, G. Bekken, J. Brooks, K. Schneider, and R. Goodson, “High performance, in-service correlation OTDR,” in Optical Fiber Communication Conference, (Optical Society of America, 2013), paper OW3G. 3.
[Crossref]

M. A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic setup (ISO: isolator; TW Fiber: TrueWave Fiber; SC source: supercontinuum source; Cir: circulator; FBG: fiber Bragg grating; OC: optical coupler; PD: photo-detector; RA: Raman amplifier; FUT: fiber under test; OSC: oscilloscope); (b) spectrum evolution with pump power (the vertical dotted line corresponds to the zero-dispersion wavelength of the TW fiber).
Fig. 2
Fig. 2 (a) Time series of optical output (with 1.48W pump power); (b) correlation trace demonstrating ultra-fine spatial resolution (inset: location of fiber-fault at 117m).
Fig. 3
Fig. 3 (a) Accumulated Raman gain over length and equivalent distribution reflectivity (inset: ratio of end-reflected signal power to Rayleigh-backscattered power along fiber without Raman amplification); (b) calculated SNR versus acquisition duration.
Fig. 4
Fig. 4 (a) Experimental result of fault at 100.34080km; (b) magnified peaks of the correlation trace.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

OSNR= P in R e 2 α s L P in 0 L ε e 2 α s l dl
d I p dz = G R I p I c α p I p
d I c dz = G R I p I c + α c I c
OSN R Raman = R I c ( Z max )g( Z max ) e α c Z max 0 Z max I c (z)g(z)ε e α c z dz
SNR= - + | x(t) | 2 dt N 0

Metrics