Abstract

We present a fully-integrated monolithic aluminum nitride optomechanical device in which lateral vibrations generated by a piezoelectric contour mode acoustic ring resonator are used to produce amplitude modulation of an optical signal in a whispering gallery mode photonic ring resonator. Acoustic and optical resonances are independently characterized in this contour mode optomechanical resonator (CMOMR). Electrically driven mechanical modes are optically detected at 35MHz, 654MHz and 884MHz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rayleigh scattering boosted multi-GHz displacement sensitivity in whispering gallery opto-mechanical resonators

Siddharth Tallur and Sunil A. Bhave
Opt. Express 21(23) 27780-27788 (2013)

High bandwidth on-chip capacitive tuning of microtoroid resonators

Christopher G. Baker, Christiaan Bekker, David L. McAuslan, Eoin Sheridan, and Warwick P. Bowen
Opt. Express 24(18) 20400-20412 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
    [Crossref] [PubMed]
  2. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74(2), 023813 (2006).
    [Crossref]
  3. J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
    [Crossref] [PubMed]
  4. R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
    [Crossref]
  5. S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express 19(10), 9020–9026 (2011).
    [Crossref] [PubMed]
  6. M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza, “Super-high-frequency two-port AlN contour-mode resonators for RF applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 38–45 (2010).
    [Crossref] [PubMed]
  7. J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9(11), 712–716 (2013).
    [Crossref]
  8. C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102(2), 021110 (2013).
    [Crossref]
  9. X. Han, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Triply resonant cavity electro-optomechanics at X-band,” New J. Phys. 16(6), 063060 (2014).
    [Crossref]
  10. G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson, and R. Ruby, “Piezoelectric aluminum nitride films for microelectromechanical systems,” MRS Bull. 37(11), 1051–1061 (2012).
    [Crossref]
  11. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
    [Crossref]
  12. S. Ghosh and G. Piazza, “Photonic microdisk resonators in aluminum nitride,” J. Appl. Phys. 113(1), 016101 (2013).
    [Crossref]
  13. G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
    [Crossref]
  14. A. Schliesser and T. J. Kippenberg, “Cavity optomechanics with whispering-gallery-mode microresonators,” in Cavity Optomechanics, M. Aspelmeyer, T.J. Kippenberg, and F. Marquardt, eds. (Springer, 2014).
  15. S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express 19(24), 24522–24529 (2011).
    [Crossref] [PubMed]
  16. S. Ghosh, C. R. Doerr, and G. Piazza, “Aluminum nitride grating couplers,” Appl. Opt. 51(17), 3763–3767 (2012).
    [Crossref] [PubMed]
  17. M. Oxborrow, “Traceable 2-D finite element simulation of the whispering gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
    [Crossref]
  18. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
    [Crossref]
  19. J. Segovia-Fernandez and G. Piazza, “Damping in 1 GHz laterally-vibrating composite piezoelectric resonators,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 1000–1003.
    [Crossref]
  20. M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Jpn. J. Appl. Phys. 49(7), 07HD13 (2010).
    [Crossref]

2014 (1)

X. Han, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Triply resonant cavity electro-optomechanics at X-band,” New J. Phys. 16(6), 063060 (2014).
[Crossref]

2013 (3)

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9(11), 712–716 (2013).
[Crossref]

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102(2), 021110 (2013).
[Crossref]

S. Ghosh and G. Piazza, “Photonic microdisk resonators in aluminum nitride,” J. Appl. Phys. 113(1), 016101 (2013).
[Crossref]

2012 (3)

G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson, and R. Ruby, “Piezoelectric aluminum nitride films for microelectromechanical systems,” MRS Bull. 37(11), 1051–1061 (2012).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

S. Ghosh, C. R. Doerr, and G. Piazza, “Aluminum nitride grating couplers,” Appl. Opt. 51(17), 3763–3767 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (4)

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Jpn. J. Appl. Phys. 49(7), 07HD13 (2010).
[Crossref]

M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza, “Super-high-frequency two-port AlN contour-mode resonators for RF applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 38–45 (2010).
[Crossref] [PubMed]

2007 (2)

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

M. Oxborrow, “Traceable 2-D finite element simulation of the whispering gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

2006 (2)

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
[Crossref]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74(2), 023813 (2006).
[Crossref]

Adibi, A.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

Alegre, T. P.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Aspelmeyer, M.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Awschalom, D. D.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9(11), 712–716 (2013).
[Crossref]

Bhave, S. A.

Bochmann, J.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9(11), 712–716 (2013).
[Crossref]

Chan, J.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Choen, J. D.

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

Cleland, A. N.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9(11), 712–716 (2013).
[Crossref]

Doerr, C. R.

Fan, L.

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102(2), 021110 (2013).
[Crossref]

Felmetsger, V.

G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson, and R. Ruby, “Piezoelectric aluminum nitride films for microelectromechanical systems,” MRS Bull. 37(11), 1051–1061 (2012).
[Crossref]

Fong, K. Y.

X. Han, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Triply resonant cavity electro-optomechanics at X-band,” New J. Phys. 16(6), 063060 (2014).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Ghosh, S.

S. Ghosh and G. Piazza, “Photonic microdisk resonators in aluminum nitride,” J. Appl. Phys. 113(1), 016101 (2013).
[Crossref]

S. Ghosh, C. R. Doerr, and G. Piazza, “Aluminum nitride grating couplers,” Appl. Opt. 51(17), 3763–3767 (2012).
[Crossref] [PubMed]

Gröblacher, S.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Hajimiri, A.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74(2), 023813 (2006).
[Crossref]

Han, X.

X. Han, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Triply resonant cavity electro-optomechanics at X-band,” New J. Phys. 16(6), 063060 (2014).
[Crossref]

Hara, M.

M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Jpn. J. Appl. Phys. 49(7), 07HD13 (2010).
[Crossref]

Hill, J. T.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Hossein-Zadeh, M.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74(2), 023813 (2006).
[Crossref]

Iwaki, M.

M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Jpn. J. Appl. Phys. 49(7), 07HD13 (2010).
[Crossref]

Kippenberg, T. J.

Krause, A.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Li, Q.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

Mayer Alegre, T. P.

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

Meenehan, S.

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

Muralt, P.

G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson, and R. Ruby, “Piezoelectric aluminum nitride films for microelectromechanical systems,” MRS Bull. 37(11), 1051–1061 (2012).
[Crossref]

Nishihara, T.

M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Jpn. J. Appl. Phys. 49(7), 07HD13 (2010).
[Crossref]

Olsson, R. H.

G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson, and R. Ruby, “Piezoelectric aluminum nitride films for microelectromechanical systems,” MRS Bull. 37(11), 1051–1061 (2012).
[Crossref]

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite element simulation of the whispering gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

Painter, O.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

Perahia, R.

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

Pernice, W. H. P.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Piazza, G.

S. Ghosh and G. Piazza, “Photonic microdisk resonators in aluminum nitride,” J. Appl. Phys. 113(1), 016101 (2013).
[Crossref]

S. Ghosh, C. R. Doerr, and G. Piazza, “Aluminum nitride grating couplers,” Appl. Opt. 51(17), 3763–3767 (2012).
[Crossref] [PubMed]

G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson, and R. Ruby, “Piezoelectric aluminum nitride films for microelectromechanical systems,” MRS Bull. 37(11), 1051–1061 (2012).
[Crossref]

M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza, “Super-high-frequency two-port AlN contour-mode resonators for RF applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 38–45 (2010).
[Crossref] [PubMed]

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
[Crossref]

J. Segovia-Fernandez and G. Piazza, “Damping in 1 GHz laterally-vibrating composite piezoelectric resonators,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 1000–1003.
[Crossref]

Pisano, A. P.

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
[Crossref]

Rinaldi, M.

M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza, “Super-high-frequency two-port AlN contour-mode resonators for RF applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 38–45 (2010).
[Crossref] [PubMed]

Rokhsari, H.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74(2), 023813 (2006).
[Crossref]

Ruby, R.

G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson, and R. Ruby, “Piezoelectric aluminum nitride films for microelectromechanical systems,” MRS Bull. 37(11), 1051–1061 (2012).
[Crossref]

Safavi-Naeini, A. H.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Sakashita, T.

M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Jpn. J. Appl. Phys. 49(7), 07HD13 (2010).
[Crossref]

Satoh, Y.

M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Jpn. J. Appl. Phys. 49(7), 07HD13 (2010).
[Crossref]

Schuck, C.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Segovia-Fernandez, J.

J. Segovia-Fernandez and G. Piazza, “Damping in 1 GHz laterally-vibrating composite piezoelectric resonators,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 1000–1003.
[Crossref]

Soltani, M.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

Sridaran, S.

Stephanou, P. J.

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
[Crossref]

Sun, X.

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102(2), 021110 (2013).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Tallur, S.

Tang, H. X.

X. Han, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Triply resonant cavity electro-optomechanics at X-band,” New J. Phys. 16(6), 063060 (2014).
[Crossref]

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102(2), 021110 (2013).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Taniguchi, S.

M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Jpn. J. Appl. Phys. 49(7), 07HD13 (2010).
[Crossref]

Ueda, M.

M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Jpn. J. Appl. Phys. 49(7), 07HD13 (2010).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74(2), 023813 (2006).
[Crossref]

Vainsencher, A.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9(11), 712–716 (2013).
[Crossref]

Xiong, C.

X. Han, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Triply resonant cavity electro-optomechanics at X-band,” New J. Phys. 16(6), 063060 (2014).
[Crossref]

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102(2), 021110 (2013).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Yegnanarayanan, S.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

Yokoyama, T.

M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Jpn. J. Appl. Phys. 49(7), 07HD13 (2010).
[Crossref]

Zhang, X.

X. Han, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Triply resonant cavity electro-optomechanics at X-band,” New J. Phys. 16(6), 063060 (2014).
[Crossref]

Zuniga, C.

M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza, “Super-high-frequency two-port AlN contour-mode resonators for RF applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 38–45 (2010).
[Crossref] [PubMed]

Zuo, C.

M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza, “Super-high-frequency two-port AlN contour-mode resonators for RF applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 38–45 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102(2), 021110 (2013).
[Crossref]

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. Oxborrow, “Traceable 2-D finite element simulation of the whispering gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza, “Super-high-frequency two-port AlN contour-mode resonators for RF applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 38–45 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. Ghosh and G. Piazza, “Photonic microdisk resonators in aluminum nitride,” J. Appl. Phys. 113(1), 016101 (2013).
[Crossref]

J. Microelectromech. Syst. (1)

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Jpn. J. Appl. Phys. 49(7), 07HD13 (2010).
[Crossref]

MRS Bull. (1)

G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson, and R. Ruby, “Piezoelectric aluminum nitride films for microelectromechanical systems,” MRS Bull. 37(11), 1051–1061 (2012).
[Crossref]

Nat. Phys. (1)

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9(11), 712–716 (2013).
[Crossref]

Nature (1)

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

New J. Phys. (2)

X. Han, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Triply resonant cavity electro-optomechanics at X-band,” New J. Phys. 16(6), 063060 (2014).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Opt. Express (3)

Phys. Rev. A (1)

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74(2), 023813 (2006).
[Crossref]

Other (2)

A. Schliesser and T. J. Kippenberg, “Cavity optomechanics with whispering-gallery-mode microresonators,” in Cavity Optomechanics, M. Aspelmeyer, T.J. Kippenberg, and F. Marquardt, eds. (Springer, 2014).

J. Segovia-Fernandez and G. Piazza, “Damping in 1 GHz laterally-vibrating composite piezoelectric resonators,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 1000–1003.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic representation describing the operation and structure of the CMOMR, consisting of centrally-anchored acoustic and photonic resonators.

Fig. 2
Fig. 2

COMSOL FEM simulation of the radial displacement profile for the two rings corresponding to the acoustic resonance of 653.7MHz. Inset shows the deformation shape of the WGM ring (scaled 1000x).

Fig. 3
Fig. 3

(a) TE polarized optical mode profile in AlN rib waveguide, (b) Axisymmetric simulation of the whispering gallery mode in the AlN ring for λo = 1538.5 nm.

Fig. 4
Fig. 4

Fabrication process flow for concurrent production of acoustic and optical resonators.

Fig. 5
Fig. 5

SEM images of the fabricated CMOMR. CMR and WGM rings (zoomed in at top right) are highlighted in red, gratings (zoomed in at bottom right) and rib waveguides are highlighted in green, top gold electrode highlighted in yellow and bottom platinum electrodes highlighted in blue. Figure inset highlights 75 nm WGM ring-waveguide gap.

Fig. 6
Fig. 6

Schematic of test setup used for acoustic, optical and electro-optomechanical characterizations.

Fig. 7
Fig. 7

Acoustic device response, with fitting of admittance plot to MBVD circuit model.

Fig. 8
Fig. 8

Optical device response, with resonant transmission at λo = 1539.247 nm fitted to Lorentzian function, and extracted optical quality factors.

Fig. 9
Fig. 9

S21 insertion loss showing the electro-optomechanical device response up to 1GHz for cavity detuning with respect to optical resonance at 1503.057 nm. Insets show simulated mechanical modes corresponding to peaks observed in the transmission plot.

Fig. 10
Fig. 10

S21 response and associated average radial displacement for the electromechanically observed resonance with fitted mechanical quality factor for comparison collected from detuned optical cavity resonance at 1507.422 nm.

Fig. 11
Fig. 11

Optical resonator transmission for + 15dBm laser input power (left) and corresponding peak optical output modulation collected at 10 pm wavelength intervals for various RF input powers.

Fig. 12
Fig. 12

Device responses after additional XeF2 release to improve mechanical quality factors. Acoustic resonator admittance shown in plot on left (with SEM of the device in inset). Electro-optomechanical response shown on right, in terms of average radial displacement and fitted mechanical quality factor for acoustically-driven mode.

Fig. 13
Fig. 13

Peak optical power modulation plotted for various levels of input RF and Laser power in XeF2 released device. Optical resonator response shown for different power levels on left, with fixed bias wavelength (1527.320 nm) selected for all measurements highlighted in red. Plot of peak modulation produced from electrical spectrum analyzer shown on right, with linear relationship between applied RF power and optical modulation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P mod = dT dλ dλ dr Δr

Metrics