Abstract

Using a deposited hydrogenated amorphous silicon (a-Si:H) waveguide, we demonstrate ultra-broad bandwidth (60 THz) parametric amplification via four-wave mixing (FWM), and subsequently achieve the first silicon optical parametric oscillator (OPO) at near-IR wavelengths. Utilization of the time-dispersion-tuned technique provides an optical source with active wavelength tuning over 42 THz with a fixed pump wave.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A silicon-based widely tunable short-wave infrared optical parametric oscillator

Bart Kuyken, Xiaoping Liu, Richard M. Osgood, Roel Baets, Günther Roelkens, and William M. J. Green
Opt. Express 21(5) 5931-5940 (2013)

Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity

Xiaoge Zeng and Miloš A. Popović
Opt. Express 22(13) 15837-15867 (2014)

Widely tunable femtosecond optical parametric oscillator based on silicon-on-insulator waveguides

Jin Wen, Hongjun Liu, Nan Huang, Qibing Sun, and Wei Zhao
Opt. Express 20(4) 3490-3498 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Weiner, Ultrafast Optics (John Wiley & Sons, 2011), Vol. 72.
  2. Z. Yue, K. K. Y. Cheung, Y. Sigang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
    [Crossref]
  3. L. Zhang, S. Yang, P. Li, X. Wang, D. Gou, W. Chen, W. Luo, H. Chen, M. Chen, and S. Xie, “An all-fiber continuously time-dispersion-tuned picosecond optical parametric oscillator at 1 μm region,” Opt. Express 21(21), 25167–25173 (2013).
    [Crossref] [PubMed]
  4. R. Ahmad and M. Rochette, “Chalcogenide optical parametric oscillator,” Opt. Express 20(9), 10095–10099 (2012).
    [Crossref] [PubMed]
  5. J. E. Sharping, M. A. Foster, A. L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel, “Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators,” Opt. Express 15(4), 1474–1479 (2007).
    [Crossref] [PubMed]
  6. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express 21(5), 5931–5940 (2013).
    [Crossref] [PubMed]
  7. A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, C. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” in CLEO: 2014 Postdeadline Paper Digest, OSA Technical Digest (online) (Optical Society of America, 2014), STh5C.6.
  8. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012).
    [Crossref] [PubMed]
  9. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
    [Crossref] [PubMed]
  10. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
    [Crossref] [PubMed]
  11. J. Matres, G. C. Ballesteros, P. Gautier, J. M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21(4), 3932–3940 (2013).
    [Crossref] [PubMed]
  12. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012).
    [Crossref] [PubMed]
  13. K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides,” Opt. Express 20(22), 24600–24606 (2012).
    [Crossref] [PubMed]
  14. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011).
    [Crossref] [PubMed]
  15. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  16. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
    [Crossref] [PubMed]
  17. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008).
    [Crossref] [PubMed]
  18. J. J. Wathen, V. R. Pagán, R. J. Suess, K.-Y. Wang, A. C. Foster, and T. E. Murphy, “Non-instantaneous optical nonlinearity of an a-Si:H nanowire waveguide,” Opt. Express 22(19), 22730–22742 (2014).
    [Crossref] [PubMed]
  19. K.-Y. Wang and A. C. Foster, “GHz near-IR optical parametric amplifier using a hydrogenated amorphous silicon waveguide,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3I.7.
    [Crossref]
  20. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
    [Crossref] [PubMed]

2014 (1)

2013 (4)

2012 (4)

2011 (2)

2010 (1)

2009 (1)

Z. Yue, K. K. Y. Cheung, Y. Sigang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

2008 (1)

2007 (2)

2003 (1)

Ahmad, R.

Almeida, V. R.

Baets, R.

Ballesteros, G. C.

Bauters, J. F.

Ben Bakir, B.

Bogaerts, W.

Bowers, J. E.

Carletti, L.

Chen, A.

Chen, H.

Chen, M.

Chen, W.

Cheung, K. K. Y.

Z. Yue, K. K. Y. Cheung, Y. Sigang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Chui, P. C.

Z. Yue, K. K. Y. Cheung, Y. Sigang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Clemmen, S.

Davenport, M. L.

Doylend, J. K.

Emplit, P.

Fang, A. W.

Fedeli, J. M.

Fédéli, J. M.

Foster, A. C.

Foster, M. A.

Gaeta, A. L.

Galili, M.

Gautier, P.

Gou, D.

Green, W. M. J.

Grillet, C.

Grosse, P.

Heck, M. J. R.

Hu, H.

Jeppesen, P.

Ji, H.

Johnson, T. J.

Kuyken, B.

Lasri, J.

Li, P.

Lin, Q.

Lipson, M.

Liu, X.

Luo, W.

Lyngnes, O.

Martí, J.

Massar, S.

Matres, J.

Menezo, S.

Michael, C. P.

Monat, C.

Morthier, G.

Moss, D. J.

Murphy, T. E.

Narayanan, K.

Osgood, R. M.

Oton, C. J.

Oxenløwe, L. K.

Pagán, V. R.

Painter, O. J.

Panepucci, R. R.

Perahia, R.

Petrillo, K. G.

Preble, S. F.

Pu, M.

Rochette, M.

Roelkens, G.

Salem, R.

Selvaraja, S. K.

Sharping, J. E.

Sigang, Y.

Z. Yue, K. K. Y. Cheung, Y. Sigang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Suess, R. J.

Turner, A. C.

Van Thourhout, D.

Vogel, K.

Wang, K.-Y.

Wang, X.

Wathen, J. J.

Wong, K. K. Y.

Z. Yue, K. K. Y. Cheung, Y. Sigang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Xie, S.

Yang, S.

Yue, Z.

Z. Yue, K. K. Y. Cheung, Y. Sigang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Zhang, L.

IEEE Photon. Technol. Lett. (1)

Z. Yue, K. K. Y. Cheung, Y. Sigang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Opt. Express (13)

L. Zhang, S. Yang, P. Li, X. Wang, D. Gou, W. Chen, W. Luo, H. Chen, M. Chen, and S. Xie, “An all-fiber continuously time-dispersion-tuned picosecond optical parametric oscillator at 1 μm region,” Opt. Express 21(21), 25167–25173 (2013).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “Chalcogenide optical parametric oscillator,” Opt. Express 20(9), 10095–10099 (2012).
[Crossref] [PubMed]

J. E. Sharping, M. A. Foster, A. L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel, “Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators,” Opt. Express 15(4), 1474–1479 (2007).
[Crossref] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express 21(5), 5931–5940 (2013).
[Crossref] [PubMed]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[Crossref] [PubMed]

J. Matres, G. C. Ballesteros, P. Gautier, J. M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21(4), 3932–3940 (2013).
[Crossref] [PubMed]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012).
[Crossref] [PubMed]

K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides,” Opt. Express 20(22), 24600–24606 (2012).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008).
[Crossref] [PubMed]

J. J. Wathen, V. R. Pagán, R. J. Suess, K.-Y. Wang, A. C. Foster, and T. E. Murphy, “Non-instantaneous optical nonlinearity of an a-Si:H nanowire waveguide,” Opt. Express 22(19), 22730–22742 (2014).
[Crossref] [PubMed]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Other (3)

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, C. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” in CLEO: 2014 Postdeadline Paper Digest, OSA Technical Digest (online) (Optical Society of America, 2014), STh5C.6.

A. Weiner, Ultrafast Optics (John Wiley & Sons, 2011), Vol. 72.

K.-Y. Wang and A. C. Foster, “GHz near-IR optical parametric amplifier using a hydrogenated amorphous silicon waveguide,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3I.7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Scanning electron micrograph of an a-Si:H waveguide before the silicon dioxide cladding. A 150-nm silicon dioxide hard mask is on top of the waveguide. (b) Modeled electric field profile of the waveguide in the quasi-TE mode. (c) Complex refractive index of bulk a-Si:H material as measured by an ellipsometer. (d) Material group-velocity dispersion (GVD) of the a-Si:H material as calculated from the measured ellipsometry data (blue) and calculated total GVD for the designed a-Si:H waveguide (205 nm × 500 nm × 8 mm), showing anomalous GVD over telecommunication wavelengths (red). (e) Calculated effective area of the fundamental TE mode as a function of wavelength.
Fig. 2
Fig. 2 (a) The calculated linear phase mismatch as function of signal wavelength. The blue and red dash lines represent the nonlinear phase (2γP) at peak pump powers of 3.6 W and 2.5 W, respectively. The 4 phase matching (PM) points in the case of the 3.6 W pump power are shown by arrows. (b) Simulated parametric gain spectrum for peak pump powers of 3.6 W and 2.5 W. The carrier-related nonlinear loss is neglected in the simulation. (c) Measured single pass on/off gain of the a-Si:H waveguide using a 1.5-ps pump with peak power of 2.5 W and 6.1-ps pump with peak power of 3.6 W. Amplification is achieved from 1326 nm - 1523 nm and 1577 nm - 1885 nm.
Fig. 3
Fig. 3 Demonstration of the a-Si:H optical parametric oscillator. (a) Experimental setup for the optical parametric oscillator (OPO). (PC: polarization controller. WDM: wavelength division multiplexer. OSA: optical spectrum analyzer. PBS: polarization beam splitter. λ/2: half-wave plate. Red line: single mode fiber) (b) Optical spectrum of the OPO when oscillation wavelength is at 1460 nm. (c) Output energy of the OPO (at 1470 nm) as a function of coupled pump energy. The oscillation threshold is 1.53 pJ with a slope efficiency of ~4.4%. Inset: output spectrum as function of coupled pump energy. (d) Cross-correlation trace between oscillation (1476 nm) and a strong 1.5 ps pump. The de-convolved pulse width for the oscillation output is 1.1ps.
Fig. 4
Fig. 4 Overlaid tuning spectra of the oscillation mode of the OPO at short wavelength side (1370 nm ~1515 nm), and long wavelength side (1600 nm ~1810 nm) for a 1558-nm pump laser.
Fig. 5
Fig. 5 Generated output wavelength extension through cascaded FWM. (a) Optical spectrum with increased pump power when + 1 represents the oscillating mode. Cascaded FWM generates idlers at + 2, −1, −2, −3, −4 modes. (b) Oscillating wave ( + 1 mode) near 1700 nm with cascaded FWM ( + 2 mode) for light generation at ~1900 nm.
Fig. 6
Fig. 6 Cross-correlation trace of the oscillation mode (1467 nm) with a 250-fs reference pulse. The de-convolved pulse width for the oscillation mode is ~300 fs assuming a sech2 pulse shape. The side peak in the trace is the cross-correlation of the cascaded FWM idler. Inset: the output spectrum of the reduced net dispersion OPO cavity. The bandwidth of the oscillation mode is greater than 30 nm, allowing ultra-short pulse generation.

Metrics