Abstract

The threshold-like onset of mode instabilities is currently the main limitation for the scaling of the average output power of fiber laser systems with diffraction limited beam quality. In this contribution, the impact of a wavelength shift of the seed signal on the mode instability threshold has been investigated. Against expectations, it is experimentally shown that the highest mode instabilities threshold is reached around 1030 nm and not for the smallest wavelength separation between pump and signal. This finding implies that the quantum defect is not the only source of thermal heating in the fiber. Systematic experiments and simulations have helped in identifying photodarkening as the most likely second heat source in the fiber. It is shown that even a negligible photodarkening-induced power loss can lead to a decrease of the mode instabilities threshold by a factor of two. Consequently, reduction of photodarkening is a promising way to mitigate mode instabilities.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening

Cesar Jauregui, Hans-Jürgen Otto, F. Stutzki, J. Limpert, and A. Tünnermann
Opt. Express 23(16) 20203-20218 (2015)

Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities

Cesar Jauregui, Hans-Jürgen Otto, Sven Breitkopf, J. Limpert, and A. Tünnermann
Opt. Express 24(8) 7879-7892 (2016)

Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities

Franz Beier, Marco Plötner, Bettina Sattler, Fabian Stutzki, Till Walbaum, Andreas Liem, Nicoletta Haarlammert, Thomas Schreiber, Ramona Eberhardt, and Andreas Tünnermann
Opt. Lett. 42(21) 4311-4314 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  2. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [Crossref] [PubMed]
  3. V. K. Pooler, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” in Proc. SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications, 89610V (2014).
  4. V. Gapontsev, D. Gapontsev, and N. Platonov, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO (2005), Vol. 12, p. 31051.
  5. Y.-C. Jeong, A. J. Boyland, J. K. Sahu, S.-H. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt Single-mode Ytterbium-doped Large-core Fiber Laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009).
    [Crossref]
  6. H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier”, accepted for publishing in Optics Letters (2014).
    [Crossref]
  7. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
    [Crossref]
  8. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
    [Crossref] [PubMed]
  9. T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
    [Crossref] [PubMed]
  10. C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
    [Crossref] [PubMed]
  11. H.-J. Otto, A. Klenke, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Scaling the mode instability threshold with multicore fibers,” Opt. Lett. 39(9), 2680–2683 (2014).
    [Crossref] [PubMed]
  12. H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
    [Crossref] [PubMed]
  13. A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21(13), 15168–15182 (2013).
    [Crossref] [PubMed]
  14. C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
    [PubMed]
  15. K. R. Hansen and J. Lægsgaard, “Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers,” Opt. Express 22(9), 11267–11278 (2014).
    [Crossref] [PubMed]
  16. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
    [Crossref] [PubMed]
  17. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref] [PubMed]
  18. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  19. S. Naderi, I. Dajani, T. Madden, and C. Robin, “Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations,” Opt. Express 21(13), 16111–16129 (2013).
    [Crossref] [PubMed]
  20. M. M. Broer, D. M. Krol, and D. J. Digiovanni, “Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber,” Opt. Lett. 18(10), 799–801 (1993).
    [Crossref] [PubMed]
  21. G. R. Atkins and A. L. Carter, “Photodarkening in Tb(3+)-doped phosphosilicate and germanosilicate optical fibers,” Opt. Lett. 19(12), 874–876 (1994).
    [Crossref] [PubMed]
  22. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
    [Crossref] [PubMed]
  23. A.V. Smith and J.J. Smith “Mode instability thresholds of fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 860108 (February 26, 2013.
    [Crossref]
  24. M. M. Jørgensen, M. Laurila, D. Noordegraaf, T. T. Alkeskjold, and J. Lægsgaard, “Thermal-recovery of modal instability in rod fiber amplifiers,” Proc. SPIE 8601, 86010U (2013).
  25. H.-J. Otto, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Dependence of Mode Instabilities on the Extracted Power of Fiber Laser Systems,” in Advanced Solid-State Lasers Congress, p. ATu3A.02 (OSA 2013).
    [Crossref]
  26. H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Mitigation of mode instabilities by dynamic excitation of fiber modes,” Proc. SPIE 8601, 86010A (2013).
  27. M. M. Johansen, M. Laurila, M. D. Maack, D. Noordegraaf, C. Jakobsen, T. T. Alkeskjold, and J. Lægsgaard, “Frequency resolved transverse mode instability in rod fiber amplifiers,” Opt. Express 21(19), 21847–21856 (2013).
    [Crossref] [PubMed]
  28. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high- power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
  29. H. Heraeus Holding Gmb, “Transmission Calculator”, http://optics.heraeus-quarzglas.com/en/home/Tools.aspx (2014).
  30. R. Paschotta, J. Nilsson, C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [Crossref]
  31. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
    [Crossref] [PubMed]
  32. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15(4), 1606–1611 (2007).
    [Crossref] [PubMed]
  33. S. Taccheo, H. Gebavi, A. Monteville, O. Le Goffic, D. Landais, D. Mechin, D. Tregoat, B. Cadier, T. Robin, D. Milanese, and T. Durrant, “Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation,” Opt. Express 19(20), 19340–19345 (2011).
    [Crossref] [PubMed]
  34. C. Jauregui, H. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express. Submitted.

2014 (3)

2013 (8)

S. Naderi, I. Dajani, T. Madden, and C. Robin, “Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations,” Opt. Express 21(13), 16111–16129 (2013).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21(13), 15168–15182 (2013).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

M. M. Jørgensen, M. Laurila, D. Noordegraaf, T. T. Alkeskjold, and J. Lægsgaard, “Thermal-recovery of modal instability in rod fiber amplifiers,” Proc. SPIE 8601, 86010U (2013).

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Mitigation of mode instabilities by dynamic excitation of fiber modes,” Proc. SPIE 8601, 86010A (2013).

M. M. Johansen, M. Laurila, M. D. Maack, D. Noordegraaf, C. Jakobsen, T. T. Alkeskjold, and J. Lægsgaard, “Frequency resolved transverse mode instability in rod fiber amplifiers,” Opt. Express 21(19), 21847–21856 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (3)

2010 (1)

2009 (1)

2007 (2)

2006 (1)

1997 (1)

R. Paschotta, J. Nilsson, C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

1994 (1)

1993 (1)

Alkeskjold, T. T.

Andersen, T. V.

Atkins, G. R.

Bello Doua, R.

Boullet, J.

Boyland, A. J.

Broeng, J.

Broer, M. M.

Cadier, B.

Cardinal, T.

Carstens, H.

Carter, A. L.

Chung, S.-H.

Dajani, I.

Digiovanni, D. J.

Durrant, T.

Eidam, T.

Ermeneux, S.

Gabler, T.

Gebavi, H.

Guillen, F.

Hädrich, S.

Hanf, S.

Hanna, D. C.

R. Paschotta, J. Nilsson, C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Hansen, K. R.

Hoffman, H. J.

Jakobsen, C.

Jansen, F.

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Mitigation of mode instabilities by dynamic excitation of fiber modes,” Proc. SPIE 8601, 86010A (2013).

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high- power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

Jauregui, C.

H.-J. Otto, A. Klenke, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Scaling the mode instability threshold with multicore fibers,” Opt. Lett. 39(9), 2680–2683 (2014).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Mitigation of mode instabilities by dynamic excitation of fiber modes,” Proc. SPIE 8601, 86010A (2013).

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high- power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Dependence of Mode Instabilities on the Extracted Power of Fiber Laser Systems,” in Advanced Solid-State Lasers Congress, p. ATu3A.02 (OSA 2013).
[Crossref]

C. Jauregui, H. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express. Submitted.

Jeong, Y.-C.

Jetschke, S.

Johansen, M. M.

Jørgensen, M. M.

M. M. Jørgensen, M. Laurila, D. Noordegraaf, T. T. Alkeskjold, and J. Lægsgaard, “Thermal-recovery of modal instability in rod fiber amplifiers,” Proc. SPIE 8601, 86010U (2013).

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[Crossref] [PubMed]

Kirchhof, J.

Klenke, A.

Koponen, J. J.

Krol, D. M.

Lægsgaard, J.

Landais, D.

Laurila, M.

Le Goffic, O.

Limpert, J.

H.-J. Otto, A. Klenke, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Scaling the mode instability threshold with multicore fibers,” Opt. Lett. 39(9), 2680–2683 (2014).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Mitigation of mode instabilities by dynamic excitation of fiber modes,” Proc. SPIE 8601, 86010A (2013).

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high- power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Dependence of Mode Instabilities on the Extracted Power of Fiber Laser Systems,” in Advanced Solid-State Lasers Congress, p. ATu3A.02 (OSA 2013).
[Crossref]

C. Jauregui, H. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express. Submitted.

Maack, M. D.

Madden, T.

Manek-Hönninger, I.

Mechin, D.

Milanese, D.

Monteville, A.

Naderi, S.

Nilsson, J.

Y.-C. Jeong, A. J. Boyland, J. K. Sahu, S.-H. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt Single-mode Ytterbium-doped Large-core Fiber Laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009).
[Crossref]

R. Paschotta, J. Nilsson, C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Noordegraaf, D.

M. M. Jørgensen, M. Laurila, D. Noordegraaf, T. T. Alkeskjold, and J. Lægsgaard, “Thermal-recovery of modal instability in rod fiber amplifiers,” Proc. SPIE 8601, 86010U (2013).

M. M. Johansen, M. Laurila, M. D. Maack, D. Noordegraaf, C. Jakobsen, T. T. Alkeskjold, and J. Lægsgaard, “Frequency resolved transverse mode instability in rod fiber amplifiers,” Opt. Express 21(19), 21847–21856 (2013).
[Crossref] [PubMed]

Otto, H.

C. Jauregui, H. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express. Submitted.

Otto, H. J.

Otto, H.-J.

H.-J. Otto, A. Klenke, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Scaling the mode instability threshold with multicore fibers,” Opt. Lett. 39(9), 2680–2683 (2014).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Mitigation of mode instabilities by dynamic excitation of fiber modes,” Proc. SPIE 8601, 86010A (2013).

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high- power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).

H.-J. Otto, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Dependence of Mode Instabilities on the Extracted Power of Fiber Laser Systems,” in Advanced Solid-State Lasers Congress, p. ATu3A.02 (OSA 2013).
[Crossref]

Paschotta, R.

R. Paschotta, J. Nilsson, C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Payne, D. N.

Podgorski, M.

Pulford, B.

Robin, C.

Robin, T.

Röpke, U.

Rothhardt, J.

Sahu, J. K.

Salin, F.

Schreiber, T.

Seise, E.

Smith, A. V.

Smith, J. J.

Söderlund, M. J.

Stutzki, F.

H.-J. Otto, A. Klenke, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Scaling the mode instability threshold with multicore fibers,” Opt. Lett. 39(9), 2680–2683 (2014).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Mitigation of mode instabilities by dynamic excitation of fiber modes,” Proc. SPIE 8601, 86010A (2013).

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high- power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Dependence of Mode Instabilities on the Extracted Power of Fiber Laser Systems,” in Advanced Solid-State Lasers Congress, p. ATu3A.02 (OSA 2013).
[Crossref]

C. Jauregui, H. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express. Submitted.

Taccheo, S.

Tammela, S. K. T.

Tregoat, D.

Tropper, C.

R. Paschotta, J. Nilsson, C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Tünnermann, A.

H.-J. Otto, A. Klenke, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Scaling the mode instability threshold with multicore fibers,” Opt. Lett. 39(9), 2680–2683 (2014).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Mitigation of mode instabilities by dynamic excitation of fiber modes,” Proc. SPIE 8601, 86010A (2013).

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high- power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Dependence of Mode Instabilities on the Extracted Power of Fiber Laser Systems,” in Advanced Solid-State Lasers Congress, p. ATu3A.02 (OSA 2013).
[Crossref]

C. Jauregui, H. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express. Submitted.

Unger, S.

Ward, B.

Wirth, C.

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

J. Opt. Soc. Korea (1)

Light: Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (16)

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[Crossref] [PubMed]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21(13), 15168–15182 (2013).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[PubMed]

K. R. Hansen and J. Lægsgaard, “Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers,” Opt. Express 22(9), 11267–11278 (2014).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

S. Naderi, I. Dajani, T. Madden, and C. Robin, “Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations,” Opt. Express 21(13), 16111–16129 (2013).
[Crossref] [PubMed]

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
[Crossref] [PubMed]

M. M. Johansen, M. Laurila, M. D. Maack, D. Noordegraaf, C. Jakobsen, T. T. Alkeskjold, and J. Lægsgaard, “Frequency resolved transverse mode instability in rod fiber amplifiers,” Opt. Express 21(19), 21847–21856 (2013).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high- power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[Crossref] [PubMed]

I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15(4), 1606–1611 (2007).
[Crossref] [PubMed]

S. Taccheo, H. Gebavi, A. Monteville, O. Le Goffic, D. Landais, D. Mechin, D. Tregoat, B. Cadier, T. Robin, D. Milanese, and T. Durrant, “Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation,” Opt. Express 19(20), 19340–19345 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Proc. SPIE (2)

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Mitigation of mode instabilities by dynamic excitation of fiber modes,” Proc. SPIE 8601, 86010A (2013).

M. M. Jørgensen, M. Laurila, D. Noordegraaf, T. T. Alkeskjold, and J. Lægsgaard, “Thermal-recovery of modal instability in rod fiber amplifiers,” Proc. SPIE 8601, 86010U (2013).

Other (7)

H.-J. Otto, C. Jauregui, F. Stutzki, J. Limpert, and A. Tünnermann, “Dependence of Mode Instabilities on the Extracted Power of Fiber Laser Systems,” in Advanced Solid-State Lasers Congress, p. ATu3A.02 (OSA 2013).
[Crossref]

H. Heraeus Holding Gmb, “Transmission Calculator”, http://optics.heraeus-quarzglas.com/en/home/Tools.aspx (2014).

A.V. Smith and J.J. Smith “Mode instability thresholds of fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 860108 (February 26, 2013.
[Crossref]

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier”, accepted for publishing in Optics Letters (2014).
[Crossref]

C. Jauregui, H. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express. Submitted.

V. K. Pooler, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” in Proc. SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications, 89610V (2014).

V. Gapontsev, D. Gapontsev, and N. Platonov, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO (2005), Vol. 12, p. 31051.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Simulated evolution of the mode instabilities (MI) threshold as a function of wavelength based on [14]. The graph is normalized to the MI threshold at 1030 nm. It is assumed that the quantum defect (QD) is the only heat source in the active fiber.
Fig. 2
Fig. 2 Schematic representation of the experimental setup. DC1 is a dichroic mirror which separates the pump and signal radiation. M1 to M5 are dielectric mirrors used to steer the IR signal; L1 to L4 are focusing lenses; L5 is a defocusing lens and W1 is a fused-silica wedge. P1 and P2 are photodiodes used to measure the average power and the stability of the beam, respectively, and PM1 is a power-meter. The moveable pinhole is used to adjust the pump power by cutting the beam caustic at different positions.
Fig. 3
Fig. 3 The graph on the left shows an example of the results from the automatic measurement of the evolution of the power and beam stability (signals from photodiodes P1 and P2, respectively). The graph on the right-hand side has been obtained from the left one by plotting the evolution of the beam stability (represented as the standard deviation of the fluctuations seen in the black photodiode trace in the left graph) against the evolution of the power. It shows the evolution of the beam stability with increasing power (blue dots), the fit function of the measured data (red solid line) and the calculated threshold (dashed black line). The stable, transition and chaotic regions have also been highlighted.
Fig. 4
Fig. 4 Evolution of the MI threshold power as a function of the signal wavelength when pumping at 976 nm (black, blue) and the simulated inversion level (green). (blue) Initial wavelength sweep and (black) subsequent wavelength sweep.
Fig. 5
Fig. 5 (a) Degradation of the MI threshold with the number of MI measurements using a pristine fiber. (b) The fiber under test is exposed to 100 W of 915 nm radiation for 6 h. The fiber initially degraded by the 915nm light shows a progressively higher MI threshold with time once that it amplifies the 1030 nm seed signal by pumping at 976 nm.
Fig. 6
Fig. 6 The fiber under test is exposed to 915 nm radiation for 30 min. The graphs show the evolution of the MI thresholds with the number of measurements at three different signal wavelengths.
Fig. 7
Fig. 7 Relative transmission of a 633 nm probe-signal. The transmission is measured while the seed signal is amplified to ~200 W. For comparison, the corresponding relative change of the saturated MI threshold with the signal wavelength is also depicted (black curve).
Fig. 8
Fig. 8 a) Evolution of the signal power along the fiber amplifier when considering (blue line) or not (red line) photodarkening. b) Evolution of the heat load induced by the quantum defect (red line), the absorption of signal photons (orange line) and the absorption of pump photons (green line). Additionally, for comparison purposes, the total heat load (blue line) is shown.
Fig. 9
Fig. 9 (a) Comparison between simulation (blue line) and experimental (green line) results. b) Dependence of the mode instability threshold with the signal wavelength in an Yb-doped fiber pumped at 976nm when considering (blue line) and not considering photodarkening (red line).

Metrics