Abstract

Liquid crystal phase modulators are emerging as a new technological advancement, since they can be used for a wide range of applications. To improve their performance, polymer stabilized blue phase liquid crystal (PS-BPLC) phase modulators with fast response time and accurate phase profile become a necessary. Here, we proposed a facile PS-BPLC phase modulator to achieve particularly low voltage and high resolution. By employing a specific external compact optical system setup, the driving voltage is reduced to 26.09V to obtain 2π phase change at the wavelength of 532 nm. An accurate numerical modeling is also conducted to provide a systematic investigation of the fringing electric field effect to the performance of high resolution PS-BPLC phase modulator. The wavefront distortion caused by the fringing electric field can be automatically compensated to generate accurate phase profile for fast response liquid crystal phase modulator. This work provides a new protocol to realize liquid crystal on silicon based fast response and high resolution phase modulator.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of fringing electric field effect on high-resolution blue phase liquid crystal spatial light modulator

Jing Yan, Zhengbo Guo, Yufei Xing, and Qing Li
Appl. Opt. 54(24) 7169-7174 (2015)

A vertical-field-driven polymer-stabilized blue phase liquid crystal mode to obtain a higher transmittance and lower driving voltage

Yong-Hun Kim, Sung-Taek Hur, Chang-Sub Park, Kyung-Woo Park, Suk-Won Choi, Shin-Won Kang, and Hak-Rin Kim
Opt. Express 19(18) 17427-17438 (2011)

Low voltage polymer-stabilized blue phase liquid crystal reflective display by doping ferroelectric nanoparticles

X. W. Xu, X. W. Zhang, D. Luo, and H. T. Dai
Opt. Express 23(25) 32267-32273 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Zheng, A. Lizana, A. Peinado, C. Ramirez, J. L. Martinez, A. Marquez, I. Moreno, and J. Campos, “Compact LCOS-SLM based polarization pattern beam generator,” J. Lightwave Technol. 33(10), 2047–2055 (2015).
  2. A. Georgiou, J. Christmas, J. Moore, A. Jeziorska-Chapman, A. Davey, N. Collings, and W. A. Crossland, “Liquid crystal over silicon device characteristics for holographic projection of high-definition television images,” Appl. Opt. 47(26), 4793–4803 (2008).
    [Crossref] [PubMed]
  3. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, “An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14(18), 8013–8018 (2006).
    [Crossref] [PubMed]
  4. P. McManamon and W. Thompson, “Phased array of phased arrays (PAPA) laser systems architecture,” Fiber Integr. Opt. 22(2), 79–88 (2003).
    [Crossref]
  5. F. Feng, I. H. White, and T. D. Wilkinson, “Free space communications with beam steering a two-electrode tapered laser diode using liquid-crystal SLM,” J. Lightwave Technol. 31(12), 2001–2007 (2013).
    [Crossref]
  6. X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46(4), 044001 (2007).
    [Crossref]
  7. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
    [Crossref]
  8. T. D. Wilkinson, C. D. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
    [Crossref]
  9. T. D. Wilkinson, W. A. Crossland, and A. B. Davey, “Applications of ferroelectric liquid crystal LCOS devices,” Ferroelectrics 278(1), 227–232 (2002).
    [Crossref]
  10. Y. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
    [Crossref]
  11. H. Ren, Y. Lin, Y. Fan, and S. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
    [Crossref]
  12. J. Sun, S. Wu, and Y. Haseba, “A low voltage submillisecond-response polymer network liquid crystal spatial light modulator,” Appl. Phys. Lett. 104(2), 023305 (2014).
    [Crossref]
  13. F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265 (2015).
    [Crossref]
  14. X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98(7), 073101 (2005).
    [Crossref]
  15. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43(1), 11–19 (2004).
    [Crossref] [PubMed]
  16. L. Xu, L. Wu, J. Zhang, and X. Liu, “Effect of phase valley on diffraction efficiency of liquid crystal optical phased array,” Proc. SPIE 7133, 71333L (2008).
  17. K. Fan-Chiang, S. Wu, and S. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
    [Crossref]
  18. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [Crossref] [PubMed]
  19. Y. Chen, D. Xu, S. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
    [Crossref]
  20. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
    [Crossref]
  21. R. M. Hyman, A. Lorenz, S. M. Morris, and T. D. Wilkinson, “Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device,” Appl. Opt. 53(29), 6925–6929 (2014).
    [Crossref] [PubMed]
  22. J. Yan, H. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
    [Crossref]
  23. D. Xu, Y. Chen, Y. Liu, and S. T. Wu, “Refraction effect in an in-plane-switching blue phase liquid crystal cell,” Opt. Express 21(21), 24721–24735 (2013).
    [PubMed]
  24. H. Cheng, J. Yan, T. Ishinabe, and S. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
    [Crossref]
  25. J. Yan, Y. Chen, S. Wu, S. Liu, K. Cheng, and J. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
    [Crossref]
  26. F. Peng, Y. Chen, J. Yuan, H. Chen, S. Wu, and Y. Haseba, “Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy,” J. Mater. Chem. C. 2, 3597–3601 (2014).
  27. H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
    [Crossref]
  28. L. Xu, J. Zhang, and L. Wu, “Numerical modeling for liquid crystal optical phased array and its phase delay characteristic,” Proc. SPIE 6352, 635225 (2006).

2015 (2)

2014 (3)

R. M. Hyman, A. Lorenz, S. M. Morris, and T. D. Wilkinson, “Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device,” Appl. Opt. 53(29), 6925–6929 (2014).
[Crossref] [PubMed]

J. Sun, S. Wu, and Y. Haseba, “A low voltage submillisecond-response polymer network liquid crystal spatial light modulator,” Appl. Phys. Lett. 104(2), 023305 (2014).
[Crossref]

F. Peng, Y. Chen, J. Yuan, H. Chen, S. Wu, and Y. Haseba, “Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy,” J. Mater. Chem. C. 2, 3597–3601 (2014).

2013 (3)

2012 (2)

H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
[Crossref]

J. Yan, Y. Chen, S. Wu, S. Liu, K. Cheng, and J. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

2011 (1)

H. Cheng, J. Yan, T. Ishinabe, and S. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[Crossref]

2010 (1)

J. Yan, H. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

2009 (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

2008 (2)

2007 (1)

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46(4), 044001 (2007).
[Crossref]

2006 (4)

T. D. Wilkinson, C. D. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, “An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14(18), 8013–8018 (2006).
[Crossref] [PubMed]

Y. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

L. Xu, J. Zhang, and L. Wu, “Numerical modeling for liquid crystal optical phased array and its phase delay characteristic,” Proc. SPIE 6352, 635225 (2006).

2005 (4)

H. Ren, Y. Lin, Y. Fan, and S. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98(7), 073101 (2005).
[Crossref]

K. Fan-Chiang, S. Wu, and S. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
[Crossref]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

2004 (1)

2003 (1)

P. McManamon and W. Thompson, “Phased array of phased arrays (PAPA) laser systems architecture,” Fiber Integr. Opt. 22(2), 79–88 (2003).
[Crossref]

2002 (2)

T. D. Wilkinson, W. A. Crossland, and A. B. Davey, “Applications of ferroelectric liquid crystal LCOS devices,” Ferroelectrics 278(1), 227–232 (2002).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Anderson, J. E.

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46(4), 044001 (2007).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98(7), 073101 (2005).
[Crossref]

Apter, B.

Bahat-Treidel, E.

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46(4), 044001 (2007).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98(7), 073101 (2005).
[Crossref]

Campos, J.

Cao, Z.

Chen, H.

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265 (2015).
[Crossref]

F. Peng, Y. Chen, J. Yuan, H. Chen, S. Wu, and Y. Haseba, “Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy,” J. Mater. Chem. C. 2, 3597–3601 (2014).

Chen, S.

K. Fan-Chiang, S. Wu, and S. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
[Crossref]

Chen, Y.

F. Peng, Y. Chen, J. Yuan, H. Chen, S. Wu, and Y. Haseba, “Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy,” J. Mater. Chem. C. 2, 3597–3601 (2014).

Y. Chen, D. Xu, S. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

D. Xu, Y. Chen, Y. Liu, and S. T. Wu, “Refraction effect in an in-plane-switching blue phase liquid crystal cell,” Opt. Express 21(21), 24721–24735 (2013).
[PubMed]

J. Yan, Y. Chen, S. Wu, S. Liu, K. Cheng, and J. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

Cheng, H.

H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
[Crossref]

H. Cheng, J. Yan, T. Ishinabe, and S. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[Crossref]

J. Yan, H. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Cheng, K.

J. Yan, Y. Chen, S. Wu, S. Liu, K. Cheng, and J. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

Christmas, J.

Collings, N.

Crossland, W. A.

A. Georgiou, J. Christmas, J. Moore, A. Jeziorska-Chapman, A. Davey, N. Collings, and W. A. Crossland, “Liquid crystal over silicon device characteristics for holographic projection of high-definition television images,” Appl. Opt. 47(26), 4793–4803 (2008).
[Crossref] [PubMed]

T. D. Wilkinson, C. D. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

T. D. Wilkinson, W. A. Crossland, and A. B. Davey, “Applications of ferroelectric liquid crystal LCOS devices,” Ferroelectrics 278(1), 227–232 (2002).
[Crossref]

Davey, A.

Davey, A. B.

T. D. Wilkinson, W. A. Crossland, and A. B. Davey, “Applications of ferroelectric liquid crystal LCOS devices,” Ferroelectrics 278(1), 227–232 (2002).
[Crossref]

Efron, U.

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Fan, Y.

H. Ren, Y. Lin, Y. Fan, and S. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Fan-Chiang, K.

K. Fan-Chiang, S. Wu, and S. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
[Crossref]

Feng, F.

Gauza, S.

J. Yan, H. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Georgiou, A.

Haseba, Y.

F. Peng, Y. Chen, J. Yuan, H. Chen, S. Wu, and Y. Haseba, “Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy,” J. Mater. Chem. C. 2, 3597–3601 (2014).

J. Sun, S. Wu, and Y. Haseba, “A low voltage submillisecond-response polymer network liquid crystal spatial light modulator,” Appl. Phys. Lett. 104(2), 023305 (2014).
[Crossref]

Y. Chen, D. Xu, S. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Henderson, C. D.

T. D. Wilkinson, C. D. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Hu, L.

Huang, T.

H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
[Crossref]

Huang, Y.

Y. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

Hyman, R. M.

Ishinabe, T.

H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
[Crossref]

H. Cheng, J. Yan, T. Ishinabe, and S. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[Crossref]

Jeziorska-Chapman, A.

Jiao, M.

J. Yan, H. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Kajiyama, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kikuchi, H.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Leyva, D. G.

T. D. Wilkinson, C. D. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

Li, D.

Li, Y.

J. Yan, H. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Lin, C.

H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
[Crossref]

Lin, Y.

H. Ren, Y. Lin, Y. Fan, and S. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Liu, C.

H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
[Crossref]

Liu, S.

J. Yan, Y. Chen, S. Wu, S. Liu, K. Cheng, and J. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

Liu, X.

L. Xu, L. Wu, J. Zhang, and X. Liu, “Effect of phase valley on diffraction efficiency of liquid crystal optical phased array,” Proc. SPIE 7133, 71333L (2008).

Liu, Y.

Lizana, A.

Lorenz, A.

Marquez, A.

Martinez, J. L.

McManamon, P.

P. McManamon and W. Thompson, “Phased array of phased arrays (PAPA) laser systems architecture,” Fiber Integr. Opt. 22(2), 79–88 (2003).
[Crossref]

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46(4), 044001 (2007).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98(7), 073101 (2005).
[Crossref]

Miranda, F. A.

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46(4), 044001 (2007).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98(7), 073101 (2005).
[Crossref]

Moore, J.

Moreno, I.

Morris, S. M.

Mu, Q.

Nagamura, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Peinado, A.

Peng, F.

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265 (2015).
[Crossref]

F. Peng, Y. Chen, J. Yuan, H. Chen, S. Wu, and Y. Haseba, “Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy,” J. Mater. Chem. C. 2, 3597–3601 (2014).

Pouch, J. J.

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46(4), 044001 (2007).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98(7), 073101 (2005).
[Crossref]

Ramirez, C.

Rao, L.

J. Yan, H. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Ren, H.

H. Ren, Y. Lin, Y. Fan, and S. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Shiu, J.

J. Yan, Y. Chen, S. Wu, S. Liu, K. Cheng, and J. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

Sugiura, N.

H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
[Crossref]

Sun, J.

J. Sun, S. Wu, and Y. Haseba, “A low voltage submillisecond-response polymer network liquid crystal spatial light modulator,” Appl. Phys. Lett. 104(2), 023305 (2014).
[Crossref]

Thompson, W.

P. McManamon and W. Thompson, “Phased array of phased arrays (PAPA) laser systems architecture,” Fiber Integr. Opt. 22(2), 79–88 (2003).
[Crossref]

Tripathi, S.

Tsai, C.

H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
[Crossref]

Twieg, R. J.

Wang, B.

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46(4), 044001 (2007).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98(7), 073101 (2005).
[Crossref]

Wang, X.

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46(4), 044001 (2007).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98(7), 073101 (2005).
[Crossref]

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Wen, C.

Y. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

White, I. H.

Wilkinson, T. D.

R. M. Hyman, A. Lorenz, S. M. Morris, and T. D. Wilkinson, “Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device,” Appl. Opt. 53(29), 6925–6929 (2014).
[Crossref] [PubMed]

F. Feng, I. H. White, and T. D. Wilkinson, “Free space communications with beam steering a two-electrode tapered laser diode using liquid-crystal SLM,” J. Lightwave Technol. 31(12), 2001–2007 (2013).
[Crossref]

T. D. Wilkinson, C. D. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

T. D. Wilkinson, W. A. Crossland, and A. B. Davey, “Applications of ferroelectric liquid crystal LCOS devices,” Ferroelectrics 278(1), 227–232 (2002).
[Crossref]

Wu, L.

L. Xu, L. Wu, J. Zhang, and X. Liu, “Effect of phase valley on diffraction efficiency of liquid crystal optical phased array,” Proc. SPIE 7133, 71333L (2008).

L. Xu, J. Zhang, and L. Wu, “Numerical modeling for liquid crystal optical phased array and its phase delay characteristic,” Proc. SPIE 6352, 635225 (2006).

Wu, S.

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265 (2015).
[Crossref]

J. Sun, S. Wu, and Y. Haseba, “A low voltage submillisecond-response polymer network liquid crystal spatial light modulator,” Appl. Phys. Lett. 104(2), 023305 (2014).
[Crossref]

F. Peng, Y. Chen, J. Yuan, H. Chen, S. Wu, and Y. Haseba, “Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy,” J. Mater. Chem. C. 2, 3597–3601 (2014).

Y. Chen, D. Xu, S. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
[Crossref]

J. Yan, Y. Chen, S. Wu, S. Liu, K. Cheng, and J. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

H. Cheng, J. Yan, T. Ishinabe, and S. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[Crossref]

J. Yan, H. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Y. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

K. Fan-Chiang, S. Wu, and S. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
[Crossref]

H. Ren, Y. Lin, Y. Fan, and S. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Wu, S. T.

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Xu, D.

D. Xu, Y. Chen, Y. Liu, and S. T. Wu, “Refraction effect in an in-plane-switching blue phase liquid crystal cell,” Opt. Express 21(21), 24721–24735 (2013).
[PubMed]

Y. Chen, D. Xu, S. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

Xu, L.

L. Xu, L. Wu, J. Zhang, and X. Liu, “Effect of phase valley on diffraction efficiency of liquid crystal optical phased array,” Proc. SPIE 7133, 71333L (2008).

L. Xu, J. Zhang, and L. Wu, “Numerical modeling for liquid crystal optical phased array and its phase delay characteristic,” Proc. SPIE 6352, 635225 (2006).

Xuan, L.

Yamamoto, S.

Y. Chen, D. Xu, S. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

Yan, J.

H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
[Crossref]

J. Yan, Y. Chen, S. Wu, S. Liu, K. Cheng, and J. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

H. Cheng, J. Yan, T. Ishinabe, and S. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[Crossref]

J. Yan, H. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yuan, J.

F. Peng, Y. Chen, J. Yuan, H. Chen, S. Wu, and Y. Haseba, “Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy,” J. Mater. Chem. C. 2, 3597–3601 (2014).

Zhang, J.

L. Xu, L. Wu, J. Zhang, and X. Liu, “Effect of phase valley on diffraction efficiency of liquid crystal optical phased array,” Proc. SPIE 7133, 71333L (2008).

L. Xu, J. Zhang, and L. Wu, “Numerical modeling for liquid crystal optical phased array and its phase delay characteristic,” Proc. SPIE 6352, 635225 (2006).

Zheng, X.

Adv. Mater. (1)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (6)

Y. Chen, D. Xu, S. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

J. Yan, H. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

H. Cheng, J. Yan, T. Ishinabe, and S. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[Crossref]

Y. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

H. Ren, Y. Lin, Y. Fan, and S. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

J. Sun, S. Wu, and Y. Haseba, “A low voltage submillisecond-response polymer network liquid crystal spatial light modulator,” Appl. Phys. Lett. 104(2), 023305 (2014).
[Crossref]

Ferroelectrics (1)

T. D. Wilkinson, W. A. Crossland, and A. B. Davey, “Applications of ferroelectric liquid crystal LCOS devices,” Ferroelectrics 278(1), 227–232 (2002).
[Crossref]

Fiber Integr. Opt. (1)

P. McManamon and W. Thompson, “Phased array of phased arrays (PAPA) laser systems architecture,” Fiber Integr. Opt. 22(2), 79–88 (2003).
[Crossref]

J. Appl. Phys. (2)

J. Yan, Y. Chen, S. Wu, S. Liu, K. Cheng, and J. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98(7), 073101 (2005).
[Crossref]

J. Disp. Technol. (2)

K. Fan-Chiang, S. Wu, and S. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
[Crossref]

H. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Liu, T. Huang, C. Tsai, C. Lin, and S. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Disp. Technol. 8(2), 98–103 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Mater. Chem. (1)

T. D. Wilkinson, C. D. Henderson, D. G. Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16(33), 3359–3365 (2006).
[Crossref]

J. Mater. Chem. C. (1)

F. Peng, Y. Chen, J. Yuan, H. Chen, S. Wu, and Y. Haseba, “Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy,” J. Mater. Chem. C. 2, 3597–3601 (2014).

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Opt. Eng. (1)

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46(4), 044001 (2007).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Proc. IEEE (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Proc. SPIE (2)

L. Xu, L. Wu, J. Zhang, and X. Liu, “Effect of phase valley on diffraction efficiency of liquid crystal optical phased array,” Proc. SPIE 7133, 71333L (2008).

L. Xu, J. Zhang, and L. Wu, “Numerical modeling for liquid crystal optical phased array and its phase delay characteristic,” Proc. SPIE 6352, 635225 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Scheme of the optical setup of the PS-BPLC phase modulator. HWP indicate half-wave plate; BS1 and BS2 are beam splitters; P1 and P2 are prisms and LB indicates a light barrier to block light.
Fig. 2
Fig. 2 The simulation and experiment results of V-T curves of the VFS PS-BPLC cell.
Fig. 3
Fig. 3 The cell gap influence on Von neglecting the fringing electric field effect.
Fig. 4
Fig. 4 The phase profile of O-mode light, E-mode light and proposed structure under the effect of fringing electric field.
Fig. 5
Fig. 5 The effect of greyscale difference between two adjacent electrodes on the modulator performance. (a) The effect of greyscale difference on Mψ . (b) The effect of greyscale difference on MΛ .
Fig. 6
Fig. 6 The effect of electrode size on the modulator performance. (a) The effect of electrode size on Mψ . (b) The effect of electrode size on MΛ .
Fig. 7
Fig. 7 The effect of the gap between two adjacent electrodes on the modulator performance. (a) The effect of the gap between two adjacent electrodes on Mψ . (b) The effect of the gap between two adjacent electrodes on MΛ .

Tables (1)

Tables Icon

Table 1 The determined applied voltage vs. phase change.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ψ = 4 π λ 0 d ( n e f f ( E ) + n o ( E ) ) d z
Δ n i n d ( E ) = Δ n s a t ( 1 exp [ ( E E s ) 2 ] )
n o ( E ) = n i s o Δ n i n d ( E ) 3 , n e ( E ) = n i s o + 2 Δ n i n d ( E ) 3
n e f f ( E ) = n o ( E ) n e ( E ) n o 2 ( E ) sin 2 ( θ ) + n e 2 ( E ) cos 2 ( θ )
M ψ = σ ( ψ ( x ) ) ψ ¯ ( x ) = 1 N x i [ ψ ( x ( i ) ) ψ ¯ ( x ) ] 2 ψ ¯ ( x )

Metrics