Abstract

This paper presents a multi-pulsed line-array push broom lidar, the pixel array scale reaches Geiger mode detectors in time-of-flight (TOF) depth imaging: by using time and space correlation between array elements of array avalanche photo detector (APD), light coding technology and a diode pumped solid-state laser with 10kHz repetition rate and 5µJ per pulses. Two signal enhancement methods, accumulation-coherence and high accuracy energy detection were combined improves the decode effect and realizes further long detection range. Experimental results and theory analysis indicating that the retrieval and denoising results of both simulated and real signals demonstrate that our method is practical and effective; what's more, the increasing scale of array sensor and the code bits can further improve system performance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Range accuracy of photon heterodyne detection with laser pulse based on Geiger-mode APD

Hanjun Luo, XiuHua Yuan, and Yanan Zeng
Opt. Express 21(16) 18983-18993 (2013)

Influence investigation on ranging performance for range-gated Geiger-mode avalanche photodiode ladar

Xin Zhou, Jianfeng Sun, Peng Jiang, Di Liu, and Qi Wang
Appl. Opt. 57(10) 2667-2674 (2018)

400-ps time resolution with a passively quenched avalanche photodiode

T. P. Grayson and L. J. Wang
Appl. Opt. 32(16) 2907-2910 (1993)

References

  • View by:
  • |
  • |
  • |

  1. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
    [Crossref]
  2. G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
    [Crossref]
  3. G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
    [Crossref]
  4. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22(8), 543–545 (1997).
    [Crossref] [PubMed]
  5. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref] [PubMed]
  6. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
    [Crossref] [PubMed]
  7. P. A. Hiskett, K. J. Gordon, J. W. Copley, and R. A. Lamb, “Long range 3D imaging with a 32x32 Geiger mode InGaAs/InP camera,” Proc. SPIE 9114, 91140I (2014).
  8. D. F. Figer, J. Lee, B. J. Hanold, B. F. Aull, J. A. Gregory, and D. R. Schuette, “A photon-counting detector for exoplanet missions,” Proc. SPIE 8151, 81510k (2011).
  9. E. de Bomiol, J. Rothman, F. Guellec, G. Vojetta, G. Destéfanis, and O. Pacaud, “Active three-dimensional and thermal imaging with a 30-µM Pitch 320×256 HgCdTe avalanche photodiode focal plane array,” Opt. Eng. 51(6), 61301–61305 (2012).
  10. H. T. Fang and D. S. Huang, “Noise reduction in lidar signal based on discrete wavelet transform,” Opt. Commun. 233(1–3), 67–76 (2004).
    [Crossref]
  11. H. T. Fang, D. S. Huang, and Y. H. Wu, “Antinoise approximation of the lidar signal with wavelet neural networks,” Appl. Opt. 44(6), 1077–1083 (2005).
    [Crossref] [PubMed]
  12. S. Wu, Z. Liu, and B. Liu, “Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition method,” Opt. Commun. 267(1), 137–144 (2006).
    [Crossref]
  13. W. Gong, J. Li, F. Mao, and J. Zhang, “Comparison of simultaneous signals obtained from a dual-field-of-view lidar and its application to noise reduction based on empirical mode decomposition,” Chin. Opt. Lett. 9(5), 050101 (2011).
    [Crossref]
  14. Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
    [Crossref]
  15. N. Menyuk, D. K. Killinger, and C. R. Menyuk, “Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements,” Appl. Opt. 21(18), 3377–3383 (1982).
    [Crossref] [PubMed]
  16. M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55(1), 41–45 (1992).
  17. J. M. Dias, E. S. Fonseca, and D. P. Resendes, “Time and range averaging of lidar echoes using APD-based receivers,” Proc. SPIE 3757, 158 (1999).
  18. F. Mao, W. Gong, and C. Li, “Anti-noise algorithm of lidar data retrieval by combining the ensemble Kalman filter and the Fernald method,” Opt. Express 21(7), 8286–8297 (2013).
    [Crossref] [PubMed]
  19. P. Tian, X. Cao, J. Liang, L. Zhang, N. Yi, L. Wang, and X. Cheng, “Improved empirical mode decomposition based denoising method for lidar signals,” Opt. Commun. 325, 54–59 (2014).
    [Crossref]
  20. Y. Zeng, Y. Liang, and R. Zang, “Blindly combined energy detection for spectrum sensing in cognitive radio,” IEEE Signal Process. Lett. 15, 649–652 (2008).
    [Crossref]
  21. A. Mariani, A. Giorgetti, and M. Chiani, “Effects of noise power estimation on energy detection for cognitive radio applications,” IEEE. Trans. Commun. 59(12), 3410–3420 (2011).
    [Crossref]

2014 (2)

P. A. Hiskett, K. J. Gordon, J. W. Copley, and R. A. Lamb, “Long range 3D imaging with a 32x32 Geiger mode InGaAs/InP camera,” Proc. SPIE 9114, 91140I (2014).

P. Tian, X. Cao, J. Liang, L. Zhang, N. Yi, L. Wang, and X. Cheng, “Improved empirical mode decomposition based denoising method for lidar signals,” Opt. Commun. 325, 54–59 (2014).
[Crossref]

2013 (3)

2012 (1)

E. de Bomiol, J. Rothman, F. Guellec, G. Vojetta, G. Destéfanis, and O. Pacaud, “Active three-dimensional and thermal imaging with a 30-µM Pitch 320×256 HgCdTe avalanche photodiode focal plane array,” Opt. Eng. 51(6), 61301–61305 (2012).

2011 (3)

D. F. Figer, J. Lee, B. J. Hanold, B. F. Aull, J. A. Gregory, and D. R. Schuette, “A photon-counting detector for exoplanet missions,” Proc. SPIE 8151, 81510k (2011).

A. Mariani, A. Giorgetti, and M. Chiani, “Effects of noise power estimation on energy detection for cognitive radio applications,” IEEE. Trans. Commun. 59(12), 3410–3420 (2011).
[Crossref]

W. Gong, J. Li, F. Mao, and J. Zhang, “Comparison of simultaneous signals obtained from a dual-field-of-view lidar and its application to noise reduction based on empirical mode decomposition,” Chin. Opt. Lett. 9(5), 050101 (2011).
[Crossref]

2009 (1)

2008 (1)

Y. Zeng, Y. Liang, and R. Zang, “Blindly combined energy detection for spectrum sensing in cognitive radio,” IEEE Signal Process. Lett. 15, 649–652 (2008).
[Crossref]

2007 (1)

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

2006 (1)

S. Wu, Z. Liu, and B. Liu, “Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition method,” Opt. Commun. 267(1), 137–144 (2006).
[Crossref]

2005 (2)

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

H. T. Fang, D. S. Huang, and Y. H. Wu, “Antinoise approximation of the lidar signal with wavelet neural networks,” Appl. Opt. 44(6), 1077–1083 (2005).
[Crossref] [PubMed]

2004 (1)

H. T. Fang and D. S. Huang, “Noise reduction in lidar signal based on discrete wavelet transform,” Opt. Commun. 233(1–3), 67–76 (2004).
[Crossref]

2000 (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

1999 (1)

J. M. Dias, E. S. Fonseca, and D. P. Resendes, “Time and range averaging of lidar echoes using APD-based receivers,” Proc. SPIE 3757, 158 (1999).

1997 (1)

1992 (1)

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55(1), 41–45 (1992).

1982 (1)

Aull, B. F.

D. F. Figer, J. Lee, B. J. Hanold, B. F. Aull, J. A. Gregory, and D. R. Schuette, “A photon-counting detector for exoplanet missions,” Proc. SPIE 8151, 81510k (2011).

Buller, G. S.

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22(8), 543–545 (1997).
[Crossref] [PubMed]

Cao, X.

P. Tian, X. Cao, J. Liang, L. Zhang, N. Yi, L. Wang, and X. Cheng, “Improved empirical mode decomposition based denoising method for lidar signals,” Opt. Commun. 325, 54–59 (2014).
[Crossref]

Cheng, X.

P. Tian, X. Cao, J. Liang, L. Zhang, N. Yi, L. Wang, and X. Cheng, “Improved empirical mode decomposition based denoising method for lidar signals,” Opt. Commun. 325, 54–59 (2014).
[Crossref]

Chiani, M.

A. Mariani, A. Giorgetti, and M. Chiani, “Effects of noise power estimation on energy detection for cognitive radio applications,” IEEE. Trans. Commun. 59(12), 3410–3420 (2011).
[Crossref]

Collins, R. J.

Copley, J. W.

P. A. Hiskett, K. J. Gordon, J. W. Copley, and R. A. Lamb, “Long range 3D imaging with a 32x32 Geiger mode InGaAs/InP camera,” Proc. SPIE 9114, 91140I (2014).

Cova, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

de Bomiol, E.

E. de Bomiol, J. Rothman, F. Guellec, G. Vojetta, G. Destéfanis, and O. Pacaud, “Active three-dimensional and thermal imaging with a 30-µM Pitch 320×256 HgCdTe avalanche photodiode focal plane array,” Opt. Eng. 51(6), 61301–61305 (2012).

Della Frera, A.

Destéfanis, G.

E. de Bomiol, J. Rothman, F. Guellec, G. Vojetta, G. Destéfanis, and O. Pacaud, “Active three-dimensional and thermal imaging with a 30-µM Pitch 320×256 HgCdTe avalanche photodiode focal plane array,” Opt. Eng. 51(6), 61301–61305 (2012).

Dias, J. M.

J. M. Dias, E. S. Fonseca, and D. P. Resendes, “Time and range averaging of lidar echoes using APD-based receivers,” Proc. SPIE 3757, 158 (1999).

Fancey, S. J.

Fang, H. T.

H. T. Fang, D. S. Huang, and Y. H. Wu, “Antinoise approximation of the lidar signal with wavelet neural networks,” Appl. Opt. 44(6), 1077–1083 (2005).
[Crossref] [PubMed]

H. T. Fang and D. S. Huang, “Noise reduction in lidar signal based on discrete wavelet transform,” Opt. Commun. 233(1–3), 67–76 (2004).
[Crossref]

Fernández, V.

Figer, D. F.

D. F. Figer, J. Lee, B. J. Hanold, B. F. Aull, J. A. Gregory, and D. R. Schuette, “A photon-counting detector for exoplanet missions,” Proc. SPIE 8151, 81510k (2011).

Fonseca, E. S.

J. M. Dias, E. S. Fonseca, and D. P. Resendes, “Time and range averaging of lidar echoes using APD-based receivers,” Proc. SPIE 3757, 158 (1999).

Gemmell, N. R.

Giorgetti, A.

A. Mariani, A. Giorgetti, and M. Chiani, “Effects of noise power estimation on energy detection for cognitive radio applications,” IEEE. Trans. Commun. 59(12), 3410–3420 (2011).
[Crossref]

Gong, W.

Gordon, K. J.

P. A. Hiskett, K. J. Gordon, J. W. Copley, and R. A. Lamb, “Long range 3D imaging with a 32x32 Geiger mode InGaAs/InP camera,” Proc. SPIE 9114, 91140I (2014).

Gregory, J. A.

D. F. Figer, J. Lee, B. J. Hanold, B. F. Aull, J. A. Gregory, and D. R. Schuette, “A photon-counting detector for exoplanet missions,” Proc. SPIE 8151, 81510k (2011).

Guellec, F.

E. de Bomiol, J. Rothman, F. Guellec, G. Vojetta, G. Destéfanis, and O. Pacaud, “Active three-dimensional and thermal imaging with a 30-µM Pitch 320×256 HgCdTe avalanche photodiode focal plane array,” Opt. Eng. 51(6), 61301–61305 (2012).

Hanold, B. J.

D. F. Figer, J. Lee, B. J. Hanold, B. F. Aull, J. A. Gregory, and D. R. Schuette, “A photon-counting detector for exoplanet missions,” Proc. SPIE 8151, 81510k (2011).

Harkins, R. D.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Hiskett, P. A.

P. A. Hiskett, K. J. Gordon, J. W. Copley, and R. A. Lamb, “Long range 3D imaging with a 32x32 Geiger mode InGaAs/InP camera,” Proc. SPIE 9114, 91140I (2014).

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Hua, D.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Huang, D. S.

H. T. Fang, D. S. Huang, and Y. H. Wu, “Antinoise approximation of the lidar signal with wavelet neural networks,” Appl. Opt. 44(6), 1077–1083 (2005).
[Crossref] [PubMed]

H. T. Fang and D. S. Huang, “Noise reduction in lidar signal based on discrete wavelet transform,” Opt. Commun. 233(1–3), 67–76 (2004).
[Crossref]

Jolliffe, B. W.

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55(1), 41–45 (1992).

Killinger, D. K.

Krichel, N. J.

Lamb, R. A.

P. A. Hiskett, K. J. Gordon, J. W. Copley, and R. A. Lamb, “Long range 3D imaging with a 32x32 Geiger mode InGaAs/InP camera,” Proc. SPIE 9114, 91140I (2014).

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Lee, J.

D. F. Figer, J. Lee, B. J. Hanold, B. F. Aull, J. A. Gregory, and D. R. Schuette, “A photon-counting detector for exoplanet missions,” Proc. SPIE 8151, 81510k (2011).

Li, C.

Li, J.

Li, S.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Li, Y.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Liang, J.

P. Tian, X. Cao, J. Liang, L. Zhang, N. Yi, L. Wang, and X. Cheng, “Improved empirical mode decomposition based denoising method for lidar signals,” Opt. Commun. 325, 54–59 (2014).
[Crossref]

Liang, Y.

Y. Zeng, Y. Liang, and R. Zang, “Blindly combined energy detection for spectrum sensing in cognitive radio,” IEEE Signal Process. Lett. 15, 649–652 (2008).
[Crossref]

Liu, B.

S. Wu, Z. Liu, and B. Liu, “Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition method,” Opt. Commun. 267(1), 137–144 (2006).
[Crossref]

Liu, Z.

S. Wu, Z. Liu, and B. Liu, “Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition method,” Opt. Commun. 267(1), 137–144 (2006).
[Crossref]

MacKinnon, G. R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Mao, F.

Mariani, A.

A. Mariani, A. Giorgetti, and M. Chiani, “Effects of noise power estimation on energy detection for cognitive radio applications,” IEEE. Trans. Commun. 59(12), 3410–3420 (2011).
[Crossref]

Massa, J. S.

McCarthy, A.

McIlveen, T. J.

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55(1), 41–45 (1992).

Menyuk, C. R.

Menyuk, N.

Milton, M. J. T.

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55(1), 41–45 (1992).

Pacaud, O.

E. de Bomiol, J. Rothman, F. Guellec, G. Vojetta, G. Destéfanis, and O. Pacaud, “Active three-dimensional and thermal imaging with a 30-µM Pitch 320×256 HgCdTe avalanche photodiode focal plane array,” Opt. Eng. 51(6), 61301–61305 (2012).

Pellegrini, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Rarity, J. G.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Ren, X.

Resendes, D. P.

J. M. Dias, E. S. Fonseca, and D. P. Resendes, “Time and range averaging of lidar echoes using APD-based receivers,” Proc. SPIE 3757, 158 (1999).

Ridley, K. D.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Rothman, J.

E. de Bomiol, J. Rothman, F. Guellec, G. Vojetta, G. Destéfanis, and O. Pacaud, “Active three-dimensional and thermal imaging with a 30-µM Pitch 320×256 HgCdTe avalanche photodiode focal plane array,” Opt. Eng. 51(6), 61301–61305 (2012).

Ruggeri, A.

Scarcella, C.

Schuette, D. R.

D. F. Figer, J. Lee, B. J. Hanold, B. F. Aull, J. A. Gregory, and D. R. Schuette, “A photon-counting detector for exoplanet missions,” Proc. SPIE 8151, 81510k (2011).

Smith, G. R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Sung, R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Swann, N. R. W.

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55(1), 41–45 (1992).

Tian, P.

P. Tian, X. Cao, J. Liang, L. Zhang, N. Yi, L. Wang, and X. Cheng, “Improved empirical mode decomposition based denoising method for lidar signals,” Opt. Commun. 325, 54–59 (2014).
[Crossref]

Tosi, A.

Vojetta, G.

E. de Bomiol, J. Rothman, F. Guellec, G. Vojetta, G. Destéfanis, and O. Pacaud, “Active three-dimensional and thermal imaging with a 30-µM Pitch 320×256 HgCdTe avalanche photodiode focal plane array,” Opt. Eng. 51(6), 61301–61305 (2012).

Walker, A. C.

Wallace, A. M.

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22(8), 543–545 (1997).
[Crossref] [PubMed]

Wang, H.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Wang, L.

P. Tian, X. Cao, J. Liang, L. Zhang, N. Yi, L. Wang, and X. Cheng, “Improved empirical mode decomposition based denoising method for lidar signals,” Opt. Commun. 325, 54–59 (2014).
[Crossref]

Wang, Y.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Woods, P. T.

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55(1), 41–45 (1992).

Wu, S.

S. Wu, Z. Liu, and B. Liu, “Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition method,” Opt. Commun. 267(1), 137–144 (2006).
[Crossref]

Wu, Y. H.

Yan, Q.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Yi, N.

P. Tian, X. Cao, J. Liang, L. Zhang, N. Yi, L. Wang, and X. Cheng, “Improved empirical mode decomposition based denoising method for lidar signals,” Opt. Commun. 325, 54–59 (2014).
[Crossref]

Zang, R.

Y. Zeng, Y. Liang, and R. Zang, “Blindly combined energy detection for spectrum sensing in cognitive radio,” IEEE Signal Process. Lett. 15, 649–652 (2008).
[Crossref]

Zeng, Y.

Y. Zeng, Y. Liang, and R. Zang, “Blindly combined energy detection for spectrum sensing in cognitive radio,” IEEE Signal Process. Lett. 15, 649–652 (2008).
[Crossref]

Zhang, J.

Zhang, L.

P. Tian, X. Cao, J. Liang, L. Zhang, N. Yi, L. Wang, and X. Cheng, “Improved empirical mode decomposition based denoising method for lidar signals,” Opt. Commun. 325, 54–59 (2014).
[Crossref]

Zhou, Z.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55(1), 41–45 (1992).

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

IEEE Signal Process. Lett. (1)

Y. Zeng, Y. Liang, and R. Zang, “Blindly combined energy detection for spectrum sensing in cognitive radio,” IEEE Signal Process. Lett. 15, 649–652 (2008).
[Crossref]

IEEE. Trans. Commun. (1)

A. Mariani, A. Giorgetti, and M. Chiani, “Effects of noise power estimation on energy detection for cognitive radio applications,” IEEE. Trans. Commun. 59(12), 3410–3420 (2011).
[Crossref]

Meas. Sci. Technol. (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Opt. Commun. (3)

S. Wu, Z. Liu, and B. Liu, “Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition method,” Opt. Commun. 267(1), 137–144 (2006).
[Crossref]

H. T. Fang and D. S. Huang, “Noise reduction in lidar signal based on discrete wavelet transform,” Opt. Commun. 233(1–3), 67–76 (2004).
[Crossref]

P. Tian, X. Cao, J. Liang, L. Zhang, N. Yi, L. Wang, and X. Cheng, “Improved empirical mode decomposition based denoising method for lidar signals,” Opt. Commun. 325, 54–59 (2014).
[Crossref]

Opt. Eng. (1)

E. de Bomiol, J. Rothman, F. Guellec, G. Vojetta, G. Destéfanis, and O. Pacaud, “Active three-dimensional and thermal imaging with a 30-µM Pitch 320×256 HgCdTe avalanche photodiode focal plane array,” Opt. Eng. 51(6), 61301–61305 (2012).

Opt. Express (2)

Opt. Lasers Eng. (1)

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (3)

P. A. Hiskett, K. J. Gordon, J. W. Copley, and R. A. Lamb, “Long range 3D imaging with a 32x32 Geiger mode InGaAs/InP camera,” Proc. SPIE 9114, 91140I (2014).

D. F. Figer, J. Lee, B. J. Hanold, B. F. Aull, J. A. Gregory, and D. R. Schuette, “A photon-counting detector for exoplanet missions,” Proc. SPIE 8151, 81510k (2011).

J. M. Dias, E. S. Fonseca, and D. P. Resendes, “Time and range averaging of lidar echoes using APD-based receivers,” Proc. SPIE 3757, 158 (1999).

Rev. Sci. Instrum. (1)

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Block diagram of the multipulse push broom imaging lidar system. (b) Establish scanning system coordinates.
Fig. 2
Fig. 2 Relationship between laser beams and FOV
Fig. 3
Fig. 3 Multi-pulse push broom coding imaging lidar system. The semiconductor laser (a) emits a beam of laser at 532nm, it becomes a narrow strip beam through laser beam expanders (b) and cylinder lens (c), the laser beam is transformed to code-beam by the coding disc (d) and then reach to target. The coding disc spins at 7200 RPM rotation speed controlled by control unit (f). The light sensitive detector (e) detects light pulse rise time to generate trigger signal for high speed data acquisition unit. At last, the target’s echo pass through telephoto lens (g) and optical fiber beam combiner (h), and arrive to APD (i).
Fig. 4
Fig. 4 A schematic of time sequence of a dithered laser source.
Fig. 5
Fig. 5 Flow of the de-noising and retrieval algorithm.
Fig. 6
Fig. 6 Two kinds of echo signal with 8 pulses from 10m and 2km targets, the blue one has noise obviously.
Fig. 7
Fig. 7 The echo signal enhancement and decode by the accumulation method (blue line) and accumulation-coherence method (red line). It showed one of pulse for 8 de-noised echo pulses at 2km.
Fig. 8
Fig. 8 (a) The echo signal with 8 pulses from range 2 km. (b) The true signal at 2 km retrieved by sub-pixel energy detection method.
Fig. 9
Fig. 9 The echo signal (red line), de-noised signal by accumulation-coherence method (green line), and echo retrieved by energy detection method (blue line). From near to far a single measurement PSNR for different range, the single pulse energy at 5μJ .
Fig. 10
Fig. 10 Echo signal with 8 pulses from range 7 km (blue line) and the true signal retrieved by sub-pixel energy detection method (red line).
Fig. 11
Fig. 11 The PSNR for 100-Shot averaged lidar return signal (red line) and 100-shot averaged data denoised by our method (green line and blue line).
Fig. 12
Fig. 12 (a)-(f) Six case of different range at 0.5km, 1km, 2km, 3km, 5km and 7km, respectively. The true time of flight are retrieved by our method. The laser single pulse energy is 5μJ .

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

C=[ c 11 c 12 c 1,N c 21 c 22 c 2,N c N1 c N2 c N,N ],
r eco = [ r eco,1 r eco,2 r eco,N ] Τ
r i = W i r eco =[ w i,1 w i,2 w i,N ][ r eco,1 r eco,2 r eco,N ], = j=1 N w i,j r eco,j
r free = [ r free,1 r free,2 r free,N ] Τ =[ 1000 0100 0001 ]
r free,i =( r free,i + r free,i+1 )& r free,i ,i=1,2,N
r free,i+1 =( r free,i + r free,i+1 )& r free,i+1 ,i=1,2,N
r co,i = R r i + r i+1 , r i =E{ ( r i + r i+1 ) r i },i=1,2,N
r co,i+1 = R r i + r i+1 , r i+1 =E{ ( r i + r i+1 ) r i+1 },i=1,2,N
r int = r co,1 + r co,2 + r co,N = i=1 N r i (t)
r int ( t )=s( t )+n( t )
g mask ( t )= m=1 N1 g( tm T m )
R rg ( t 0 )= t r int ( t ) g mask * ( t t 0 )
{ T ^ m , τ ^ }=arg max T m ,τ | R rg |
p( t )= r int ( t ) g mask ( t t ^ 0 )| T m = T ^ m
PSNR=10log{ m=1 M r 2 (m) m=1 M [ r(m) r ^ (m) ] 2 }

Metrics