Abstract

Based on the cone cell sensitivity, a new metric defined as cone sensitivity difference (CSD) was proposed to describe the color discrimination property of a light source. We conducted experiments at mesopic condition to test the performance of the metric. A color temperature tunable poly-chromatic LED system consisted of 7 single-color LEDs was utilized in the experiments. The performance of the metric was assessed by computing the Spearman and Pearson correlation coefficients with the observers’ ratings of color discrimination obtained from the experiments. Several conventional color quality metrics, including Ra, color quality scale (Qa), gamut area scale (Qg) and color-discrimination index (CDI), were also evaluated with respect to color discrimination by correlation analyses. Among the selected metrics, Qg had the best Spearman and Pearson correlation coefficients with the observers’ ratings for most of the correlated color temperatures (CCTs). The newly proposed CSD was highly (p<0.01) correlated with Qg, and its correlation with the observers’ ratings increased at the higher CCTs. For CCT above 5000K, CSD had significant Pearson correlation coefficients with the observers’ ratings. There was a possibility that CSD would be qualified to describe color discrimination with further optimization.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Correlation between color quality metric predictions and visual appreciation of light sources

Kevin Smet, Wouter R. Ryckaert, Michael R. Pointer, Geert Deconinck, and Peter Hanselaer
Opt. Express 19(9) 8151-8166 (2011)

Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition

Kevin W. Houser, Minchen Wei, Aurélien David, Michael R. Krames, and Xiangyou Sharon Shen
Opt. Express 21(8) 10393-10411 (2013)

Memory colours and colour quality evaluation of conventional and solid-state lamps

Kevin A. G. Smet, Wouter R. Ryckaert, Michael R. Pointer, Geert Deconinck, and Peter Hanselaer
Opt. Express 18(25) 26229-26244 (2010)

References

  • View by:
  • |
  • |
  • |

  1. W. R. J. Brown and D. L. MacAdam, “Visual sensitivities to combined chromaticity and luminance differences,” J. Opt. Soc. Am. 39(10), 808–834 (1949).
    [Crossref] [PubMed]
  2. W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am. 62(2), 191–194 (1972).
    [Crossref] [PubMed]
  3. K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
    [Crossref]
  4. S. M. Aston and H. E. Belichambers, “Illumination colour rendering and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
    [Crossref]
  5. R. B. Lotto and D. Purves, “An empirical explanation of color contrast,” Proc. Natl. Acad. Sci. U.S.A. 97(23), 12834–12839 (2000).
    [Crossref] [PubMed]
  6. D. Williams, N. Sekiguchi, and D. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. U.S.A. 90(21), 9770–9777 (1993).
    [Crossref] [PubMed]
  7. Y. Lin, Z. Deng, Z. Guo, Z. Liu, H. Lan, Y. Lu, and Y. Cao, “Study on the correlations between color rendering indices and the spectral power distribution,” Opt. Express 22(S4), A1029–A1039 (2014).
  8. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
    [Crossref]
  9. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
    [Crossref] [PubMed]
  10. D. B. Judd, “A flattery metric for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).
  11. C. W. Jerome, “Color rendering properties of light sources,” Color Res. Appl. 1(1), 37–42 (1976).
  12. W. A. Thornton, “A validation of the color preference metric,” Illum. Eng. 62, 191–194 (1967).
  13. A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, A. Petrulis, and M. Shu, “Color rendition engine,” Opt. Express 20(5), 5356–5367 (2012).
    [Crossref] [PubMed]
  14. A. G. Kirk and J. F. O’Brien, “Perceptually based tone mapping for low-light conditions,” ACM Trans. Graph. 30(4), 1–10 (2011).
    [Crossref]
  15. T. Ishida, “Color identification data obtained from photopic to mesopic illuminance levels,” Color Res. Appl. 27(4), 252–259 (2002).
    [Crossref]
  16. A. Stockman and L. T. Sharpe, “Human cone spectral sensitivities: a progress report,” Vision Res. 38(21), 3193–3206 (1998).
    [Crossref] [PubMed]
  17. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40(13), 1711–1737 (2000).
    [Crossref] [PubMed]
  18. A. Stockman, D. I. A. MacLeod, and J. A. Vivien, “Isolation of the middle- and long-wavelength-sensitive cones in normal trichromats,” J. Opt. Soc. Am. A 10(12), 2471–2490 (1993).
    [Crossref] [PubMed]
  19. A. Stockman and L. T. Sharp, “10-deg fundamentals based on the Stiles & Burch 10-deg CMFs,” http://www.cvrl.org/ .

2014 (1)

2012 (1)

2011 (1)

A. G. Kirk and J. F. O’Brien, “Perceptually based tone mapping for low-light conditions,” ACM Trans. Graph. 30(4), 1–10 (2011).
[Crossref]

2010 (2)

2007 (1)

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

2002 (1)

T. Ishida, “Color identification data obtained from photopic to mesopic illuminance levels,” Color Res. Appl. 27(4), 252–259 (2002).
[Crossref]

2000 (2)

R. B. Lotto and D. Purves, “An empirical explanation of color contrast,” Proc. Natl. Acad. Sci. U.S.A. 97(23), 12834–12839 (2000).
[Crossref] [PubMed]

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40(13), 1711–1737 (2000).
[Crossref] [PubMed]

1998 (1)

A. Stockman and L. T. Sharpe, “Human cone spectral sensitivities: a progress report,” Vision Res. 38(21), 3193–3206 (1998).
[Crossref] [PubMed]

1993 (2)

D. Williams, N. Sekiguchi, and D. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. U.S.A. 90(21), 9770–9777 (1993).
[Crossref] [PubMed]

A. Stockman, D. I. A. MacLeod, and J. A. Vivien, “Isolation of the middle- and long-wavelength-sensitive cones in normal trichromats,” J. Opt. Soc. Am. A 10(12), 2471–2490 (1993).
[Crossref] [PubMed]

1976 (1)

C. W. Jerome, “Color rendering properties of light sources,” Color Res. Appl. 1(1), 37–42 (1976).

1972 (1)

1969 (1)

S. M. Aston and H. E. Belichambers, “Illumination colour rendering and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[Crossref]

1967 (2)

D. B. Judd, “A flattery metric for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).

W. A. Thornton, “A validation of the color preference metric,” Illum. Eng. 62, 191–194 (1967).

1949 (1)

Aston, S. M.

S. M. Aston and H. E. Belichambers, “Illumination colour rendering and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[Crossref]

Belichambers, H. E.

S. M. Aston and H. E. Belichambers, “Illumination colour rendering and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[Crossref]

Brainard, D.

D. Williams, N. Sekiguchi, and D. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. U.S.A. 90(21), 9770–9777 (1993).
[Crossref] [PubMed]

Brown, W. R. J.

Cao, Y.

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Deconinck, G.

Deng, Z.

Guo, Z.

Hanselaer, P.

Hashimoto, K.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

Ishida, T.

T. Ishida, “Color identification data obtained from photopic to mesopic illuminance levels,” Color Res. Appl. 27(4), 252–259 (2002).
[Crossref]

Jerome, C. W.

C. W. Jerome, “Color rendering properties of light sources,” Color Res. Appl. 1(1), 37–42 (1976).

Judd, D. B.

D. B. Judd, “A flattery metric for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).

Kirk, A. G.

A. G. Kirk and J. F. O’Brien, “Perceptually based tone mapping for low-light conditions,” ACM Trans. Graph. 30(4), 1–10 (2011).
[Crossref]

Lan, H.

Lin, Y.

Liu, Z.

Lotto, R. B.

R. B. Lotto and D. Purves, “An empirical explanation of color contrast,” Proc. Natl. Acad. Sci. U.S.A. 97(23), 12834–12839 (2000).
[Crossref] [PubMed]

Lu, Y.

MacAdam, D. L.

MacLeod, D. I. A.

Nayatani, Y.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

O’Brien, J. F.

A. G. Kirk and J. F. O’Brien, “Perceptually based tone mapping for low-light conditions,” ACM Trans. Graph. 30(4), 1–10 (2011).
[Crossref]

Ohno, Y.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Petrulis, A.

Pointer, M. R.

Purves, D.

R. B. Lotto and D. Purves, “An empirical explanation of color contrast,” Proc. Natl. Acad. Sci. U.S.A. 97(23), 12834–12839 (2000).
[Crossref] [PubMed]

Ryckaert, W. R.

Sekiguchi, N.

D. Williams, N. Sekiguchi, and D. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. U.S.A. 90(21), 9770–9777 (1993).
[Crossref] [PubMed]

Sharpe, L. T.

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40(13), 1711–1737 (2000).
[Crossref] [PubMed]

A. Stockman and L. T. Sharpe, “Human cone spectral sensitivities: a progress report,” Vision Res. 38(21), 3193–3206 (1998).
[Crossref] [PubMed]

Shimizu, M.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

Shu, M.

Smet, K. A. G.

Stockman, A.

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40(13), 1711–1737 (2000).
[Crossref] [PubMed]

A. Stockman and L. T. Sharpe, “Human cone spectral sensitivities: a progress report,” Vision Res. 38(21), 3193–3206 (1998).
[Crossref] [PubMed]

A. Stockman, D. I. A. MacLeod, and J. A. Vivien, “Isolation of the middle- and long-wavelength-sensitive cones in normal trichromats,” J. Opt. Soc. Am. A 10(12), 2471–2490 (1993).
[Crossref] [PubMed]

Thornton, W. A.

W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am. 62(2), 191–194 (1972).
[Crossref] [PubMed]

W. A. Thornton, “A validation of the color preference metric,” Illum. Eng. 62, 191–194 (1967).

Tuzikas, A.

Vaicekauskas, R.

Vitta, P.

Vivien, J. A.

Williams, D.

D. Williams, N. Sekiguchi, and D. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. U.S.A. 90(21), 9770–9777 (1993).
[Crossref] [PubMed]

Yano, T.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

Žukauskas, A.

ACM Trans. Graph. (1)

A. G. Kirk and J. F. O’Brien, “Perceptually based tone mapping for low-light conditions,” ACM Trans. Graph. 30(4), 1–10 (2011).
[Crossref]

Color Res. Appl. (3)

T. Ishida, “Color identification data obtained from photopic to mesopic illuminance levels,” Color Res. Appl. 27(4), 252–259 (2002).
[Crossref]

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

C. W. Jerome, “Color rendering properties of light sources,” Color Res. Appl. 1(1), 37–42 (1976).

Illum. Eng. (2)

W. A. Thornton, “A validation of the color preference metric,” Illum. Eng. 62, 191–194 (1967).

D. B. Judd, “A flattery metric for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Lighting Res. Tech. (1)

S. M. Aston and H. E. Belichambers, “Illumination colour rendering and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[Crossref]

Opt. Eng. (1)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Opt. Express (3)

Proc. Natl. Acad. Sci. U.S.A. (2)

R. B. Lotto and D. Purves, “An empirical explanation of color contrast,” Proc. Natl. Acad. Sci. U.S.A. 97(23), 12834–12839 (2000).
[Crossref] [PubMed]

D. Williams, N. Sekiguchi, and D. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. U.S.A. 90(21), 9770–9777 (1993).
[Crossref] [PubMed]

Vision Res. (2)

A. Stockman and L. T. Sharpe, “Human cone spectral sensitivities: a progress report,” Vision Res. 38(21), 3193–3206 (1998).
[Crossref] [PubMed]

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40(13), 1711–1737 (2000).
[Crossref] [PubMed]

Other (1)

A. Stockman and L. T. Sharp, “10-deg fundamentals based on the Stiles & Burch 10-deg CMFs,” http://www.cvrl.org/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The normalized cone sensitivity of L, M and S cone cells of 10°visual angle in logarithmic distribution [19].
Fig. 2
Fig. 2 The normalized value of |lg M(λ)-lg L(λ)|.
Fig. 3
Fig. 3 The objects (1. red paper flower; 2. yellow paper flower; 3. blue paper flower; 4. green paper flower; 5. multicolor paper flower; 6. red can; 7. green can; 8. blue can; 9. green apple; 10. red apple; 11. grape; 12. mango) illuminated under one LED combination of 435 (nm)-519 (nm)-593 (nm) at 5600K, with a uniform illumination of 20 ± 1.2 lx at the inner bottom of the booth. The photograph had a hue shift from the real objects and appeared “cooler”.
Fig. 4
Fig. 4 The positions of the adjacent booths and the observer. Observers were free to move along the dash line with a 20° horizontal visual angle when only watching one booth.
Fig. 5
Fig. 5 The relative spectral radiance of the seven single-color LEDs utilized in the experiments.
Fig. 6
Fig. 6 The gamut areas in the CIELAB (a*,b*) color space of the reference illuminant of D65 and twelve three-chip LED combinations at (a) 3000K and (b) 5600K.
Fig. 7
Fig. 7 The gamut areas in the 1960 CIE (u, v) chromaticity diagram of the reference illuminant of D65 and twelve three-chip LED combinations at (a) 3000K and (b) 5600K.

Tables (3)

Tables Icon

Table 1 The average scores for each of the 12 three-chip LED combinations at 11 CCTs. The “AVE” is the average value of the eleven scores for one combination.

Tables Icon

Table 2 Pearson correlation coefficients between the metric values

Tables Icon

Table 3 Pearson and Spearman correlation coefficients of Ra, Qa, Qg, CDI and CSD values with the color discrimination results obtained from the experiments.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CSD= λ=360 760 | lgM(λ)lgL(λ) | S(λ)dλ λ=360 760 S(λ)dλ

Metrics