Abstract

We numerically investigate the effect of the pixel boundary on the angular emission characteristics of top-emitting organic light-emitting diodes (OLEDs) using the finite element method. A three-dimensional OLED structure has the square pixel boundary, which is surrounded by the pixel definition layer. The angular emission characteristics based on the Poynting vectors are calculated in various positions of a Hertz dipole emitter within the pixel boundary. When the dipole emitter is located near the center of the square pixel, the angular emission characteristics have a symmetric forward-directed pattern, which is similar to the angular emission pattern calculated by the thin-film-based optical model. When the position of the dipole emitter is close to the pixel boundary, the angular emission pattern becomes asymmetric because the optical reflections from the pixel boundary in the horizontal direction affect the emission pattern of the dipole emitter. The total angular emission characteristics of the top-emitting OLED are obtained by summing the individual angular emission pattern of the whole dipole emitters, which are assumed to be uniformly distributed in the two-dimensional emission plane. The asymmetrical angular emission characteristics of the dipole emitters near the pixel boundary contribute to narrowing the total angular emission pattern.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light modulation of top emission organic light emitting diodes showing strong microcavity effect by applying multilayered scattering film

Nam Su Kim, Woo Young Lee, Seon Hyeak Jung, and Min Chul Suh
Opt. Express 26(2) 1185-1198 (2018)

Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss

Yi-Bo Zhang, Qing-Dong Ou, Yan-Qing Li, Jing-De Chen, Xin-Dong Zhao, Jian Wei, Zhong-Zhi Xie, and Jian-Xin Tang
Opt. Express 25(14) 15662-15675 (2017)

Top-emitting organic light-emitting diodes

Simone Hofmann, Michael Thomschke, Björn Lüssem, and Karl Leo
Opt. Express 19(S6) A1250-A1264 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes: Influence of cavity design,” Appl. Phys. Lett. 97(25), 253308 (2010).
    [Crossref]
  2. S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6 Suppl 6), A1250–A1264 (2011).
    [Crossref] [PubMed]
  3. M. J. Park, G. H. Kim, Y. H. Son, H. W. Bae, J. H. Kong, and J. H. Kwon, “High efficiency red top-emitting micro-cavity organic light emitting diodes,” Opt. Express 22(17), 19919–19929 (2014).
    [PubMed]
  4. S. An, J. Lee, Y. Kim, T. Kim, D. Jin, H. Min, H. Chung, and S. S. Kim, “2.8-inch WQVGA flexible AMOLED using high performance low temperature polysilicon TFT on plastic substrates,” SID Symposium Digest of Technical Papers 41(1), 706–709 (2012).
  5. E. F. Schubert, Light-Emitting Diodes, 2nd Ed. (Cambridge University, 2006).
  6. B.-Y. Jung and C. K. Hwangbo, “Determination of an optimized Alq3 layer thickness in organic light-emitting diodes by using microcavity effects,” J. Korean Phys. Soc. 48(6), 1281–1285 (2006).
  7. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A 15(4), 962–971 (1998).
    [Crossref]
  8. S. Mladenovski, S. Hofmann, S. Reineke, L. Penninck, T. Verschueren, and K. Neyts, “Integrated optical model for organic light-emitting devices,” J. Appl. Phys. 109(8), 083114 (2011).
    [Crossref]
  9. H. Benisty, R. Stanley, and M. Mayer, “Method of source term for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15(5), 1192–1201 (1998).
    [Crossref]
  10. Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu, M. T. Greiner, and Z. H. Lu, “Optical design of organic light emitting diodes,” J. Appl. Phys. 109(5), 053107 (2011).
    [Crossref]
  11. Y.-J. Lee, S.-H. Kim, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-W. Song, Y.-C. Kim, and Y. R. Do, “Far-field radiation of photonic crystal organic light-emitting diode,” Opt. Express 13(15), 5864–5870 (2005).
    [Crossref] [PubMed]
  12. A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6(1), 3–9 (2005).
    [Crossref]
  13. S. S. Jeong and J.-H. Ko, “Optical simulation study on the effect of diffusing substrate and pillow lenses on the outcoupling efficiency of organic light emitting diodes,” J. Opt. Soc. Korea 17(3), 269–274 (2013).
    [Crossref]
  14. J.-W. Kim, J.-H. Jang, M.-C. Oh, J.-W. Shin, D.-H. Cho, J.-H. Moon, and J.-I. Lee, “FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer,” Opt. Express 22(1), 498–507 (2014).
    [Crossref] [PubMed]
  15. M. Slootsky and S. R. Forrest, “Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid,” Appl. Phys. Lett. 94(16), 163302 (2009).
    [Crossref]
  16. C. O. M. S. O. L. Multiphysics, Version 4.3a Comsol Inc. (2012), http://www.comsol.com.
  17. P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The Role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 378–386 (2002).
    [Crossref]
  18. http://refractiveindex.info
  19. S. Ando, Y. Watanabe, and T. Matsuura, “Wavelength dependence of refractive indices of polyimides in visible and near-IR regions,” Jpn. J. Appl. Phys. 41(8), 5254–5258 (2002).
    [Crossref]

2014 (2)

2013 (1)

2011 (3)

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6 Suppl 6), A1250–A1264 (2011).
[Crossref] [PubMed]

S. Mladenovski, S. Hofmann, S. Reineke, L. Penninck, T. Verschueren, and K. Neyts, “Integrated optical model for organic light-emitting devices,” J. Appl. Phys. 109(8), 083114 (2011).
[Crossref]

Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu, M. T. Greiner, and Z. H. Lu, “Optical design of organic light emitting diodes,” J. Appl. Phys. 109(5), 053107 (2011).
[Crossref]

2010 (1)

S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes: Influence of cavity design,” Appl. Phys. Lett. 97(25), 253308 (2010).
[Crossref]

2009 (1)

M. Slootsky and S. R. Forrest, “Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid,” Appl. Phys. Lett. 94(16), 163302 (2009).
[Crossref]

2006 (1)

B.-Y. Jung and C. K. Hwangbo, “Determination of an optimized Alq3 layer thickness in organic light-emitting diodes by using microcavity effects,” J. Korean Phys. Soc. 48(6), 1281–1285 (2006).

2005 (2)

A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6(1), 3–9 (2005).
[Crossref]

Y.-J. Lee, S.-H. Kim, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-W. Song, Y.-C. Kim, and Y. R. Do, “Far-field radiation of photonic crystal organic light-emitting diode,” Opt. Express 13(15), 5864–5870 (2005).
[Crossref] [PubMed]

2002 (2)

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The Role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 378–386 (2002).
[Crossref]

S. Ando, Y. Watanabe, and T. Matsuura, “Wavelength dependence of refractive indices of polyimides in visible and near-IR regions,” Jpn. J. Appl. Phys. 41(8), 5254–5258 (2002).
[Crossref]

1998 (2)

Ando, S.

S. Ando, Y. Watanabe, and T. Matsuura, “Wavelength dependence of refractive indices of polyimides in visible and near-IR regions,” Jpn. J. Appl. Phys. 41(8), 5254–5258 (2002).
[Crossref]

Asano, T.

A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6(1), 3–9 (2005).
[Crossref]

Bae, H. W.

Barnes, W. L.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The Role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 378–386 (2002).
[Crossref]

Benisty, H.

Cho, D.-H.

Cho, S.-H.

Chutinan, A.

A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6(1), 3–9 (2005).
[Crossref]

Do, Y. R.

Forrest, S. R.

M. Slootsky and S. R. Forrest, “Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid,” Appl. Phys. Lett. 94(16), 163302 (2009).
[Crossref]

Freitag, P.

S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes: Influence of cavity design,” Appl. Phys. Lett. 97(25), 253308 (2010).
[Crossref]

Fujita, M.

A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6(1), 3–9 (2005).
[Crossref]

Furno, M.

S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes: Influence of cavity design,” Appl. Phys. Lett. 97(25), 253308 (2010).
[Crossref]

Greiner, M. T.

Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu, M. T. Greiner, and Z. H. Lu, “Optical design of organic light emitting diodes,” J. Appl. Phys. 109(5), 053107 (2011).
[Crossref]

Helander, M. G.

Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu, M. T. Greiner, and Z. H. Lu, “Optical design of organic light emitting diodes,” J. Appl. Phys. 109(5), 053107 (2011).
[Crossref]

Hobson, P. A.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The Role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 378–386 (2002).
[Crossref]

Hofmann, S.

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6 Suppl 6), A1250–A1264 (2011).
[Crossref] [PubMed]

S. Mladenovski, S. Hofmann, S. Reineke, L. Penninck, T. Verschueren, and K. Neyts, “Integrated optical model for organic light-emitting devices,” J. Appl. Phys. 109(8), 083114 (2011).
[Crossref]

S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes: Influence of cavity design,” Appl. Phys. Lett. 97(25), 253308 (2010).
[Crossref]

Hwangbo, C. K.

B.-Y. Jung and C. K. Hwangbo, “Determination of an optimized Alq3 layer thickness in organic light-emitting diodes by using microcavity effects,” J. Korean Phys. Soc. 48(6), 1281–1285 (2006).

Ishihara, K.

A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6(1), 3–9 (2005).
[Crossref]

Jang, J.-H.

Jeong, S. S.

Jung, B.-Y.

B.-Y. Jung and C. K. Hwangbo, “Determination of an optimized Alq3 layer thickness in organic light-emitting diodes by using microcavity effects,” J. Korean Phys. Soc. 48(6), 1281–1285 (2006).

Kim, G. H.

Kim, G.-H.

Kim, J.-W.

Kim, S.-H.

Kim, Y.-C.

Ko, J.-H.

Kong, J. H.

Kwon, J. H.

Lee, J.-I.

Lee, Y.-H.

Lee, Y.-J.

Leo, K.

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6 Suppl 6), A1250–A1264 (2011).
[Crossref] [PubMed]

S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes: Influence of cavity design,” Appl. Phys. Lett. 97(25), 253308 (2010).
[Crossref]

Lu, Z. H.

Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu, M. T. Greiner, and Z. H. Lu, “Optical design of organic light emitting diodes,” J. Appl. Phys. 109(5), 053107 (2011).
[Crossref]

Lüssem, B.

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6 Suppl 6), A1250–A1264 (2011).
[Crossref] [PubMed]

S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes: Influence of cavity design,” Appl. Phys. Lett. 97(25), 253308 (2010).
[Crossref]

Matsuura, T.

S. Ando, Y. Watanabe, and T. Matsuura, “Wavelength dependence of refractive indices of polyimides in visible and near-IR regions,” Jpn. J. Appl. Phys. 41(8), 5254–5258 (2002).
[Crossref]

Mayer, M.

Mladenovski, S.

S. Mladenovski, S. Hofmann, S. Reineke, L. Penninck, T. Verschueren, and K. Neyts, “Integrated optical model for organic light-emitting devices,” J. Appl. Phys. 109(8), 083114 (2011).
[Crossref]

Moon, J.-H.

Neyts, K.

S. Mladenovski, S. Hofmann, S. Reineke, L. Penninck, T. Verschueren, and K. Neyts, “Integrated optical model for organic light-emitting devices,” J. Appl. Phys. 109(8), 083114 (2011).
[Crossref]

Neyts, K. A.

Noda, S.

A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6(1), 3–9 (2005).
[Crossref]

Oh, M.-C.

Park, M. J.

Penninck, L.

S. Mladenovski, S. Hofmann, S. Reineke, L. Penninck, T. Verschueren, and K. Neyts, “Integrated optical model for organic light-emitting devices,” J. Appl. Phys. 109(8), 083114 (2011).
[Crossref]

Puzzo, D. P.

Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu, M. T. Greiner, and Z. H. Lu, “Optical design of organic light emitting diodes,” J. Appl. Phys. 109(5), 053107 (2011).
[Crossref]

Qiu, J.

Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu, M. T. Greiner, and Z. H. Lu, “Optical design of organic light emitting diodes,” J. Appl. Phys. 109(5), 053107 (2011).
[Crossref]

Reineke, S.

S. Mladenovski, S. Hofmann, S. Reineke, L. Penninck, T. Verschueren, and K. Neyts, “Integrated optical model for organic light-emitting devices,” J. Appl. Phys. 109(8), 083114 (2011).
[Crossref]

Sage, I.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The Role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 378–386 (2002).
[Crossref]

Shin, J.-W.

Slootsky, M.

M. Slootsky and S. R. Forrest, “Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid,” Appl. Phys. Lett. 94(16), 163302 (2009).
[Crossref]

Son, Y. H.

Song, Y.-W.

Stanley, R.

Thomschke, M.

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6 Suppl 6), A1250–A1264 (2011).
[Crossref] [PubMed]

S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes: Influence of cavity design,” Appl. Phys. Lett. 97(25), 253308 (2010).
[Crossref]

Verschueren, T.

S. Mladenovski, S. Hofmann, S. Reineke, L. Penninck, T. Verschueren, and K. Neyts, “Integrated optical model for organic light-emitting devices,” J. Appl. Phys. 109(8), 083114 (2011).
[Crossref]

Wang, Z. B.

Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu, M. T. Greiner, and Z. H. Lu, “Optical design of organic light emitting diodes,” J. Appl. Phys. 109(5), 053107 (2011).
[Crossref]

Wasey, J. A. E.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The Role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 378–386 (2002).
[Crossref]

Watanabe, Y.

S. Ando, Y. Watanabe, and T. Matsuura, “Wavelength dependence of refractive indices of polyimides in visible and near-IR regions,” Jpn. J. Appl. Phys. 41(8), 5254–5258 (2002).
[Crossref]

Xu, X. F.

Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu, M. T. Greiner, and Z. H. Lu, “Optical design of organic light emitting diodes,” J. Appl. Phys. 109(5), 053107 (2011).
[Crossref]

Appl. Phys. Lett. (2)

S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes: Influence of cavity design,” Appl. Phys. Lett. 97(25), 253308 (2010).
[Crossref]

M. Slootsky and S. R. Forrest, “Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid,” Appl. Phys. Lett. 94(16), 163302 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The Role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 378–386 (2002).
[Crossref]

J. Appl. Phys. (2)

S. Mladenovski, S. Hofmann, S. Reineke, L. Penninck, T. Verschueren, and K. Neyts, “Integrated optical model for organic light-emitting devices,” J. Appl. Phys. 109(8), 083114 (2011).
[Crossref]

Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu, M. T. Greiner, and Z. H. Lu, “Optical design of organic light emitting diodes,” J. Appl. Phys. 109(5), 053107 (2011).
[Crossref]

J. Korean Phys. Soc. (1)

B.-Y. Jung and C. K. Hwangbo, “Determination of an optimized Alq3 layer thickness in organic light-emitting diodes by using microcavity effects,” J. Korean Phys. Soc. 48(6), 1281–1285 (2006).

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Korea (1)

Jpn. J. Appl. Phys. (1)

S. Ando, Y. Watanabe, and T. Matsuura, “Wavelength dependence of refractive indices of polyimides in visible and near-IR regions,” Jpn. J. Appl. Phys. 41(8), 5254–5258 (2002).
[Crossref]

Opt. Express (4)

Org. Electron. (1)

A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6(1), 3–9 (2005).
[Crossref]

Other (4)

C. O. M. S. O. L. Multiphysics, Version 4.3a Comsol Inc. (2012), http://www.comsol.com.

S. An, J. Lee, Y. Kim, T. Kim, D. Jin, H. Min, H. Chung, and S. S. Kim, “2.8-inch WQVGA flexible AMOLED using high performance low temperature polysilicon TFT on plastic substrates,” SID Symposium Digest of Technical Papers 41(1), 706–709 (2012).

E. F. Schubert, Light-Emitting Diodes, 2nd Ed. (Cambridge University, 2006).

http://refractiveindex.info

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of the cross-sectional view of a top-emitting OLED with light escape cones. The effect of the pixel boundary on the light emission is observed in the blue region of the EML, where light escape cone is overlapped with the PDL boundary. (b) Ratio of the emission area affected by the optical reflections and refractions at the pixel boundaries (marked in sky-blue color) to the total pixel area as a function of the pixel size of a. We set b = 0.14 μm, which corresponds to the vertical distance between the dipole emitter and the top surface of t = 0.2 μm [1].

Fig. 2
Fig. 2

(a) Three-dimensional structure of the top-emitting OLED used in the simulation model, which corresponds to one of the pixels of any OLED display panels shown in the inset. (Top vacuum layer covering the top-emitting OLED is left out to enhance the visibility.) (b) Cross-sectional view of the top-emitting OLED along with the corresponding layer thickness.

Fig. 3
Fig. 3

Calculated time-average power on the top surface of the pixel with respect to the direction of the dipole emitter. The pixel boundaries are marked in the white dash lines, which ranges from −2.5 to + 2.5 μm.

Fig. 4
Fig. 4

Calculated time-average power in the cross section of the center line at various positions of the dipole emitter within the pixel boundary. The red arrows at the top surface indicate the spatial distribution of the time-average Poynting vectors.

Fig. 5
Fig. 5

(a) Calculated results of the angular emission characteristics when the dipole is located at the center of the pixel. To verify the accuracy of the FEM-based calculation, the angular emission characteristics are also calculated at the same multilayer structure based on the two-dimensional thin-film-based optical model. (b) Calculation results of the angular emission characteristics on the top surface at various positions of the dipole emitter shown in Fig. 4.

Fig. 6
Fig. 6

(a) Spatial arrangement of an array of the point dipole emitters. The average spacing between the dipole emitters is 0.5 μm. (b) Calculated time-average optical power on the top surface from the array of the point dipole emitters with the spatial incoherency considered.

Fig. 7
Fig. 7

(a) (Blue line) Calculated total angular emission characteristics on the top surface, which is based on the time-average Poynting vectors obtained by an array of 100 point dipole emitters. (Red line) Calculated angular emission characteristics from one dipole emitter located at the center of the pixel (0, 0). (b) Calculated angular emission patterns obtained by the summation of two dipole emitters at the position of (−1.75 μm, 0) and (−2.25 μm, 0) close to the left edge boundary and at the position of ( + 1.75 μm, 0) and ( + 2.25 μm, 0) close to the right edge boundary. When the two asymmetrical emission patterns are averaged, the total angular emission pattern becomes symmetrical and narrower compared with that emitted from one dipole emitter located at the center of the pixel (0, 0).

Tables (1)

Tables Icon

Table 1 Complex refractive index of the materials used in the simulation

Metrics