Abstract

Fabrication of competitive solar cells based on nano-textured ultrathin silicon technology is challenging nowadays. Attention is paid to the optimization of this type of texture, with a lot of simulation and experimental results published in the last few years. While previous studies discussed mainly the local features of the surface texture, we highlight here the importance of their filling fraction. In this work, we focus on a fair comparison between a technologically realizable correlated disorder pattern of inverted nano-pyramids on an ultrathin crystalline-silicon layer, and its periodically patterned counterpart. A fair comparison is made possible by defining an equivalent periodic structure for each hole filling fraction. Moreover, in order to be as realistic as possible, we consider patterns that could be fabricated by standard patterning techniques: hole-mask colloidal lithography, nanoimprint lithography and wet chemical etching. Based on numerical simulations, we show that inverted nano-pyramid patterns with correlated disorder provide typically greater efficiency than their periodic counterparts. However, the hole filling fraction of the etched pattern plays a crucial role and may limit the benefits of the correlated disorder due to experimental restrictions on pattern fabrication.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Honeycomb micro-textures for light trapping in multi-crystalline silicon thin-film solar cells

D. Eisenhauer, H. Sai, T. Matsui, G. Köppel, B. Rech, and C. Becker
Opt. Express 26(10) A498-A507 (2018)

Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells

Christos Trompoukis, Inès Massiot, Valérie Depauw, Ounsi El Daif, Kidong Lee, Alexandre Dmitriev, Ivan Gordon, Robert Mertens, and Jef Poortmans
Opt. Express 24(2) A191-A201 (2016)

Small pyramidal textured ultrathin crystalline silicon solar cells with double-layer passivation

Xinyu Tan, Wensheng Yan, Yiteng Tu, and Can Deng
Opt. Express 25(13) 14725-14731 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Singh, “Why silicon is and will remain the dominant photovoltaic material,” J. Nanophoton. 3, 032503 (2009).
    [Crossref]
  2. European Photovoltaic Industry Association, www.epia.org (2015).
  3. M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Progr. Photovolt. Res. Appl. 9, 123–135 (2001).
    [Crossref]
  4. International Technology Roadmap for Photovoltaic (ITRPV), http://www.itrpv.net/ (2015).
  5. L. Tsakalakos, Nanotechnology for Photovoltaics (CRC Press, 2010).
  6. J. Nelson, The Physics of Solar Cells (Imperial College, 2003).
    [Crossref]
  7. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
    [Crossref]
  8. E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29, 300–305 (1982).
    [Crossref]
  9. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
    [Crossref] [PubMed]
  10. M. M. de Jong, P. J. Sonneveld, J. Baggerman, C. J. M. van Rijn, J. K. Rath, and R. E. I. Schropp, “Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments,” Prog. Photovolt. Res. Appl. 22, 540–547 (2014).
    [Crossref]
  11. L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Photonic light trapping and electrical transport in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 135, 78–92 (2015).
    [Crossref]
  12. R. Rothemund, T. Umundum, G. Meinhardt, K. Hingerl, T. Fromherz, and W. Jantsch, “Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings,” Prog. Photovolt. Res. Appl. 21, 747–753 (2013).
  13. D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
    [Crossref]
  14. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
    [Crossref] [PubMed]
  15. M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” in “Proc. SPIE,”, (Brussels, Belgium, 2012), vol. 8438, pp. 84380F-84380F–9.
  16. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
    [Crossref]
  17. A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photoniccrystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
    [Crossref]
  18. R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photoniccrystal thin films,” Phys. Rev. A 88, 053835 (2013).
    [Crossref]
  19. A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 1237–1245 (2014).
  20. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
    [Crossref]
  21. T. K. Chong, J. Wilson, S. Mokkapati, and K. R. Catchpole, “Optimal wavelength scale diffraction gratings for light trapping in solar cells,” Journal of Optics 14, 024012 (2012).
    [Crossref]
  22. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 1–7 (2013).
    [Crossref]
  23. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mat. 11, 1017–1022 (2012).
  24. C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20, A125–A132 (2012).
    [Crossref] [PubMed]
  25. P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Engineering gaussian disorder at rough interfaces for light trapping in thin-film solar cells,” Opt. Lett. 37, 4868–4870 (2012).
    [Crossref] [PubMed]
  26. D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897–1899 (2004).
    [Crossref] [PubMed]
  27. M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells,” Opt. Express 20, 29488–29499 (2012).
    [Crossref]
  28. P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Light trapping in thin-film solar cells with randomly rough and hybrid textures,” Opt. Express 21, A808–A820 (2013).
    [Crossref] [PubMed]
  29. M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21, A268–A275 (2013).
    [Crossref] [PubMed]
  30. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013).
    [Crossref] [PubMed]
  31. A. Herman, C. Trompoukis, V. Depauw, O. El Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
    [Crossref]
  32. S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, J. S. Yu, and Y. T. Lee, “Antireflective property of thin film a-si solar cell structures with graded refractive index structure,” Opt. Express 19, A108–A117 (2011).
    [Crossref] [PubMed]
  33. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
    [Crossref]
  34. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
    [Crossref]
  35. J. Frühauf, Shape and Functional Elements of the Bulk Silicon Microtechnique: A Manual of Wet-Etched Silicon Structures (Springer-Verlag, 2005).
  36. D. Lockau, T. Sontheimer, C. Becker, E. Rudigier-Voigt, F. Schmidt, and B. Rech, “Nanophotonic light trapping in 3-dimensional thin-film silicon architectures,” Opt. Express 21, A42–A52 (2013).
    [Crossref] [PubMed]
  37. J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express 18, 5481–5495 (2010).
    [Crossref] [PubMed]
  38. O. Sigmund and K. Hougaard, “Geometric properties of optimal photonic crystals,” Phys. Rev. Lett. 100, 153904 (2008).
    [Crossref] [PubMed]
  39. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Absorption enhancing proximity effects in aperiodic nanowire arrays,” Opt. Express 21, A964–A969 (2013).
    [Crossref]
  40. C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?”; Opt. Express 22, A542–A551 (2014).
    [Crossref] [PubMed]
  41. S. E. Han and G. Chen, “Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells,” Nano Lett. 10, 4692–4696 (2010).
    [Crossref] [PubMed]
  42. European photoNvoltaic project, http://www.photonvoltaics.org/ (2015). [This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No 309127, PhotoNVoltaics].
  43. V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, and J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Prog. Photovolt. Res. Appl. 19, 844–850 (2011).
    [Crossref]
  44. American Society for Testing Materials, http://rredc.nrel.gov/solar/spectra/am1.5/ . (2015).
  45. K.-H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18, 10369–10376 (2010).
    [Crossref] [PubMed]
  46. R. Judson, “Genetic algorithms and their use in chemistry,” in “Reviews in Computational Chemistry,” (John Wiley & Sons, Inc., 1996), pp. 1–73.
  47. A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92, 1689–1696 (2008).
    [Crossref]
  48. A. Mayer, L. Gaouyat, D. Nicolay, T. Carletti, and O. Deparis, “Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector,” Opt. Express 22, A1641–A1649 (2014).
    [Crossref]
  49. R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley-IEEE Press,2007).
    [Crossref]
  50. A. Mayer and A. Bay, “Optimization by a genetic algorithm of the light-extraction efficiency of a GaN light-emitting diode,” Journal of Optics 17, 025002 (2015).
    [Crossref]
  51. A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Minimizing light reflection from dielectric textured surfaces,” J. Opt. Soc. Am. A 28, 770–777 (2011).
    [Crossref]
  52. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
    [Crossref]
  53. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104, 064509 (2008).
    [Crossref]
  54. C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
    [Crossref]

2015 (3)

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Photonic light trapping and electrical transport in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 135, 78–92 (2015).
[Crossref]

A. Mayer and A. Bay, “Optimization by a genetic algorithm of the light-extraction efficiency of a GaN light-emitting diode,” Journal of Optics 17, 025002 (2015).
[Crossref]

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

2014 (5)

A. Mayer, L. Gaouyat, D. Nicolay, T. Carletti, and O. Deparis, “Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector,” Opt. Express 22, A1641–A1649 (2014).
[Crossref]

C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?”; Opt. Express 22, A542–A551 (2014).
[Crossref] [PubMed]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 1237–1245 (2014).

M. M. de Jong, P. J. Sonneveld, J. Baggerman, C. J. M. van Rijn, J. K. Rath, and R. E. I. Schropp, “Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments,” Prog. Photovolt. Res. Appl. 22, 540–547 (2014).
[Crossref]

D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
[Crossref]

2013 (8)

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photoniccrystal thin films,” Phys. Rev. A 88, 053835 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 1–7 (2013).
[Crossref]

R. Rothemund, T. Umundum, G. Meinhardt, K. Hingerl, T. Fromherz, and W. Jantsch, “Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings,” Prog. Photovolt. Res. Appl. 21, 747–753 (2013).

D. Lockau, T. Sontheimer, C. Becker, E. Rudigier-Voigt, F. Schmidt, and B. Rech, “Nanophotonic light trapping in 3-dimensional thin-film silicon architectures,” Opt. Express 21, A42–A52 (2013).
[Crossref] [PubMed]

P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Light trapping in thin-film solar cells with randomly rough and hybrid textures,” Opt. Express 21, A808–A820 (2013).
[Crossref] [PubMed]

M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21, A268–A275 (2013).
[Crossref] [PubMed]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013).
[Crossref] [PubMed]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Absorption enhancing proximity effects in aperiodic nanowire arrays,” Opt. Express 21, A964–A969 (2013).
[Crossref]

2012 (10)

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells,” Opt. Express 20, 29488–29499 (2012).
[Crossref]

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[Crossref]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

T. K. Chong, J. Wilson, S. Mokkapati, and K. R. Catchpole, “Optimal wavelength scale diffraction gratings for light trapping in solar cells,” Journal of Optics 14, 024012 (2012).
[Crossref]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mat. 11, 1017–1022 (2012).

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20, A125–A132 (2012).
[Crossref] [PubMed]

P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Engineering gaussian disorder at rough interfaces for light trapping in thin-film solar cells,” Opt. Lett. 37, 4868–4870 (2012).
[Crossref] [PubMed]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photoniccrystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (3)

2009 (1)

R. Singh, “Why silicon is and will remain the dominant photovoltaic material,” J. Nanophoton. 3, 032503 (2009).
[Crossref]

2008 (3)

O. Sigmund and K. Hougaard, “Geometric properties of optimal photonic crystals,” Phys. Rev. Lett. 100, 153904 (2008).
[Crossref] [PubMed]

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92, 1689–1696 (2008).
[Crossref]

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104, 064509 (2008).
[Crossref]

2007 (2)

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[Crossref]

2004 (2)

D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897–1899 (2004).
[Crossref] [PubMed]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

2001 (1)

M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Progr. Photovolt. Res. Appl. 9, 123–135 (2001).
[Crossref]

1995 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[Crossref]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

1982 (1)

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[Crossref]

Abdo, I.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Aberle, A.

Aberle, A. G.

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” in “Proc. SPIE,”, (Brussels, Belgium, 2012), vol. 8438, pp. 84380F-84380F–9.

Alaverdyan, Y.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[Crossref]

Alexander, D. T. L.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Andreani, L. C.

Asatryan, A. A.

Baggerman, J.

M. M. de Jong, P. J. Sonneveld, J. Baggerman, C. J. M. van Rijn, J. K. Rath, and R. E. I. Schropp, “Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments,” Prog. Photovolt. Res. Appl. 22, 540–547 (2014).
[Crossref]

Ballif, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104, 064509 (2008).
[Crossref]

Battaglia, C.

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells,” Opt. Express 20, 29488–29499 (2012).
[Crossref]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” in “Proc. SPIE,”, (Brussels, Belgium, 2012), vol. 8438, pp. 84380F-84380F–9.

Bay, A.

A. Mayer and A. Bay, “Optimization by a genetic algorithm of the light-extraction efficiency of a GaN light-emitting diode,” Journal of Optics 17, 025002 (2015).
[Crossref]

Becker, C.

Bläsi, B.

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells,” Opt. Express 20, 29488–29499 (2012).
[Crossref]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” in “Proc. SPIE,”, (Brussels, Belgium, 2012), vol. 8438, pp. 84380F-84380F–9.

Boccard, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Botten, L. C.

Bozzola, A.

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Photonic light trapping and electrical transport in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 135, 78–92 (2015).
[Crossref]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 1237–1245 (2014).

C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?”; Opt. Express 22, A542–A551 (2014).
[Crossref] [PubMed]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
[Crossref] [PubMed]

Brenner, K.-H.

Burresi, M.

Cabarrocas, P. R. i.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

Cantoni, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Cariou, R.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Carletti, T.

Catchpole, K. R.

T. K. Chong, J. Wilson, S. Mokkapati, and K. R. Catchpole, “Optimal wavelength scale diffraction gratings for light trapping in solar cells,” Journal of Optics 14, 024012 (2012).
[Crossref]

Caurel, E. G.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Charrière, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Chen, G.

S. E. Han and G. Chen, “Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Chen, W.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 1–7 (2013).
[Crossref]

Chong, T. K.

T. K. Chong, J. Wilson, S. Mokkapati, and K. R. Catchpole, “Optimal wavelength scale diffraction gratings for light trapping in solar cells,” Journal of Optics 14, 024012 (2012).
[Crossref]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[Crossref]

Cody, G.

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[Crossref]

Cosme, I.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Cristini-Robbe, O.

D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
[Crossref]

Cubero, O.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104, 064509 (2008).
[Crossref]

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Daif, O. E.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

de Jong, M. M.

M. M. de Jong, P. J. Sonneveld, J. Baggerman, C. J. M. van Rijn, J. K. Rath, and R. E. I. Schropp, “Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments,” Prog. Photovolt. Res. Appl. 22, 540–547 (2014).
[Crossref]

de Sterke, C. M.

Deblock, Y.

D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
[Crossref]

Deinega, A.

Deparis, O.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

A. Mayer, L. Gaouyat, D. Nicolay, T. Carletti, and O. Deparis, “Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector,” Opt. Express 22, A1641–A1649 (2014).
[Crossref]

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[Crossref]

Depauw, V.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 1–7 (2013).
[Crossref]

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[Crossref]

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, and J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Prog. Photovolt. Res. Appl. 19, 844–850 (2011).
[Crossref]

Despeisse, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Djafari-Rouhani, B.

D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
[Crossref]

Dmitriev, A.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[Crossref]

Dossou, K. B.

Drouard, E.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photoniccrystal thin films,” Phys. Rev. A 88, 053835 (2013).
[Crossref]

El Daif, O.

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[Crossref]

Escarré, J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Faucher, M.

D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
[Crossref]

Favuzzi, P. A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photoniccrystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Foldyna, M.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Forberich, K.

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells,” Opt. Express 20, 29488–29499 (2012).
[Crossref]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” in “Proc. SPIE,”, (Brussels, Belgium, 2012), vol. 8438, pp. 84380F-84380F–9.

Fredriksson, H.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[Crossref]

Fromherz, T.

R. Rothemund, T. Umundum, G. Meinhardt, K. Hingerl, T. Fromherz, and W. Jantsch, “Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings,” Prog. Photovolt. Res. Appl. 21, 747–753 (2013).

Frühauf, J.

J. Frühauf, Shape and Functional Elements of the Bulk Silicon Microtechnique: A Manual of Wet-Etched Silicon Structures (Springer-Verlag, 2005).

Gaouyat, L.

Gerace, D.

Gjessing, J.

Gomard, G.

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photoniccrystal thin films,” Phys. Rev. A 88, 053835 (2013).
[Crossref]

Gordon, I.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, and J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Prog. Photovolt. Res. Appl. 19, 844–850 (2011).
[Crossref]

Green, M. A.

M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Progr. Photovolt. Res. Appl. 9, 123–135 (2001).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

Han, S. E.

S. E. Han and G. Chen, “Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Haug, F.-J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104, 064509 (2008).
[Crossref]

Haupt, R. L.

R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley-IEEE Press,2007).
[Crossref]

Heidari, B.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Herman, A.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[Crossref]

Hingerl, K.

R. Rothemund, T. Umundum, G. Meinhardt, K. Hingerl, T. Fromherz, and W. Jantsch, “Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings,” Prog. Photovolt. Res. Appl. 21, 747–753 (2013).

Hougaard, K.

O. Sigmund and K. Hougaard, “Geometric properties of optimal photonic crystals,” Phys. Rev. Lett. 100, 153904 (2008).
[Crossref] [PubMed]

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Huang, N.

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Jang, S. J.

Jantsch, W.

R. Rothemund, T. Umundum, G. Meinhardt, K. Hingerl, T. Fromherz, and W. Jantsch, “Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings,” Prog. Photovolt. Res. Appl. 21, 747–753 (2013).

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Judson, R.

R. Judson, “Genetic algorithms and their use in chemistry,” in “Reviews in Computational Chemistry,” (John Wiley & Sons, Inc., 1996), pp. 1–73.

Kasemo, B.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[Crossref]

Kawakami, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photoniccrystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Kluth, O.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

Kowalczewski, P.

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[Crossref]

Krauss, T. F.

C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?”; Opt. Express 22, A542–A551 (2014).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 1–7 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Lalouat, L.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photoniccrystal thin films,” Phys. Rev. A 88, 053835 (2013).
[Crossref]

Lambert, Y.

D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
[Crossref]

Langhammer, C.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[Crossref]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Lee, K.-D.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Lee, Y. T.

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 1–7 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Lin, A.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92, 1689–1696 (2008).
[Crossref]

Lin, C.

Liscidini, M.

Liu, J.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 1–7 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Lockau, D.

Lodewijks, K.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Lozovik, Y.

Mandorlo, F.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Marstein, E. S.

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 1–7 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Massiot, I.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Mayer, A.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

A. Mayer and A. Bay, “Optimization by a genetic algorithm of the light-extraction efficiency of a GaN light-emitting diode,” Journal of Optics 17, 025002 (2015).
[Crossref]

A. Mayer, L. Gaouyat, D. Nicolay, T. Carletti, and O. Deparis, “Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector,” Opt. Express 22, A1641–A1649 (2014).
[Crossref]

McPhedran, R. C.

Meinhardt, G.

R. Rothemund, T. Umundum, G. Meinhardt, K. Hingerl, T. Fromherz, and W. Jantsch, “Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings,” Prog. Photovolt. Res. Appl. 21, 747–753 (2013).

Mertens, R.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Mijkovic, V.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Mokkapati, S.

T. K. Chong, J. Wilson, S. Mokkapati, and K. R. Catchpole, “Optimal wavelength scale diffraction gratings for light trapping in solar cells,” Journal of Optics 14, 024012 (2012).
[Crossref]

Muller, J.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Müllerova, L.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

Nelson, J.

J. Nelson, The Physics of Solar Cells (Imperial College, 2003).
[Crossref]

Nicolay, D.

Noda, S.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photoniccrystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Orobtchouk, R.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Oskooi, A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photoniccrystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Park, C. Y.

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Pennec, Y.

D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
[Crossref]

Peretti, R.

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photoniccrystal thin films,” Phys. Rev. A 88, 053835 (2013).
[Crossref]

Peters, M.

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells,” Opt. Express 20, 29488–29499 (2012).
[Crossref]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” in “Proc. SPIE,”, (Brussels, Belgium, 2012), vol. 8438, pp. 84380F-84380F–9.

Phillips, J.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92, 1689–1696 (2008).
[Crossref]

Poortmans, J.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, and J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Prog. Photovolt. Res. Appl. 19, 844–850 (2011).
[Crossref]

Poruba, A.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

Potapkin, B.

Poulain, G.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Poulton, C. G.

Povinelli, M. L.

Prasciolu, M.

Pratesi, F.

Prod’Homme, P.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Qiu, Y.

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, and J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Prog. Photovolt. Res. Appl. 19, 844–850 (2011).
[Crossref]

Rath, J. K.

M. M. de Jong, P. J. Sonneveld, J. Baggerman, C. J. M. van Rijn, J. K. Rath, and R. E. I. Schropp, “Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments,” Prog. Photovolt. Res. Appl. 22, 540–547 (2014).
[Crossref]

Rech, B.

D. Lockau, T. Sontheimer, C. Becker, E. Rudigier-Voigt, F. Schmidt, and B. Rech, “Nanophotonic light trapping in 3-dimensional thin-film silicon architectures,” Opt. Express 21, A42–A52 (2013).
[Crossref] [PubMed]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[Crossref]

Riboli, F.

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mat. 11, 1017–1022 (2012).

Rothemund, R.

R. Rothemund, T. Umundum, G. Meinhardt, K. Hingerl, T. Fromherz, and W. Jantsch, “Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings,” Prog. Photovolt. Res. Appl. 21, 747–753 (2013).

Rudigier-Voigt, E.

Sahraei, N.

Schmidt, F.

Schropp, R. E. I.

M. M. de Jong, P. J. Sonneveld, J. Baggerman, C. J. M. van Rijn, J. K. Rath, and R. E. I. Schropp, “Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments,” Prog. Photovolt. Res. Appl. 22, 540–547 (2014).
[Crossref]

Schuster, C. S.

Seassal, C.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photoniccrystal thin films,” Phys. Rev. A 88, 053835 (2013).
[Crossref]

Shigeta, H.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photoniccrystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Sigmund, O.

O. Sigmund and K. Hougaard, “Geometric properties of optimal photonic crystals,” Phys. Rev. Lett. 100, 153904 (2008).
[Crossref] [PubMed]

Singh, R.

R. Singh, “Why silicon is and will remain the dominant photovoltaic material,” J. Nanophoton. 3, 032503 (2009).
[Crossref]

Söderström, K.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Söderström, T.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104, 064509 (2008).
[Crossref]

Song, Y. M.

Sonneveld, P. J.

M. M. de Jong, P. J. Sonneveld, J. Baggerman, C. J. M. van Rijn, J. K. Rath, and R. E. I. Schropp, “Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments,” Prog. Photovolt. Res. Appl. 22, 540–547 (2014).
[Crossref]

Sontheimer, T.

Springer, J.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

Stivenard, D.

D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
[Crossref]

Sturmberg, B. C. P.

Sudbø, A.

Sutherland, D.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[Crossref]

Tanaka, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photoniccrystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

Terrazzoni-Daudrix, V.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104, 064509 (2008).
[Crossref]

Tormen, M.

Trompoukis, C.

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[Crossref]

Tsakalakos, L.

L. Tsakalakos, Nanotechnology for Photovoltaics (CRC Press, 2010).

Umundum, T.

R. Rothemund, T. Umundum, G. Meinhardt, K. Hingerl, T. Fromherz, and W. Jantsch, “Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings,” Prog. Photovolt. Res. Appl. 21, 747–753 (2013).

Valuev, I.

Van Nieuwenhuysen, K.

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, and J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Prog. Photovolt. Res. Appl. 19, 844–850 (2011).
[Crossref]

van Rijn, C. J. M.

M. M. de Jong, P. J. Sonneveld, J. Baggerman, C. J. M. van Rijn, J. K. Rath, and R. E. I. Schropp, “Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments,” Prog. Photovolt. Res. Appl. 22, 540–547 (2014).
[Crossref]

Vanecek, M.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

Vynck, K.

Werner, D. H.

R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley-IEEE Press,2007).
[Crossref]

Wiersma, D. S.

Wilson, J.

T. K. Chong, J. Wilson, S. Mokkapati, and K. R. Catchpole, “Optimal wavelength scale diffraction gratings for light trapping in solar cells,” Journal of Optics 14, 024012 (2012).
[Crossref]

Xu, T.

D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
[Crossref]

Yablonovitch, E.

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[Crossref]

Yeo, C. I.

Yu, J. S.

Zäch, M.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[Crossref]

Zhou, D.

D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
[Crossref]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 1–7 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

ACS Nano (1)

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[Crossref]

Appl. Phys. Lett. (2)

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photoniccrystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100, 181110 (2012).
[Crossref]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[Crossref]

IEEE Trans. Electron. Dev. (1)

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[Crossref]

J. Appl. Phys. (5)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[Crossref]

D. Zhou, Y. Pennec, B. Djafari-Rouhani, O. Cristini-Robbe, T. Xu, Y. Lambert, Y. Deblock, M. Faucher, and D. Stivenard, “Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications,” J. Appl. Phys. 115, 134304 (2014).
[Crossref]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104, 064509 (2008).
[Crossref]

J. Nanophoton. (1)

R. Singh, “Why silicon is and will remain the dominant photovoltaic material,” J. Nanophoton. 3, 032503 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Journal of Optics (2)

A. Mayer and A. Bay, “Optimization by a genetic algorithm of the light-extraction efficiency of a GaN light-emitting diode,” Journal of Optics 17, 025002 (2015).
[Crossref]

T. K. Chong, J. Wilson, S. Mokkapati, and K. R. Catchpole, “Optimal wavelength scale diffraction gratings for light trapping in solar cells,” Journal of Optics 14, 024012 (2012).
[Crossref]

Nano Lett. (1)

S. E. Han and G. Chen, “Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 1–7 (2013).
[Crossref]

Nat. Mat. (1)

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mat. 11, 1017–1022 (2012).

Nature Nanotechnology (1)

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770–774 (2007).
[Crossref]

Opt. Express (13)

K.-H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18, 10369–10376 (2010).
[Crossref] [PubMed]

A. Mayer, L. Gaouyat, D. Nicolay, T. Carletti, and O. Deparis, “Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector,” Opt. Express 22, A1641–A1649 (2014).
[Crossref]

D. Lockau, T. Sontheimer, C. Becker, E. Rudigier-Voigt, F. Schmidt, and B. Rech, “Nanophotonic light trapping in 3-dimensional thin-film silicon architectures,” Opt. Express 21, A42–A52 (2013).
[Crossref] [PubMed]

J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express 18, 5481–5495 (2010).
[Crossref] [PubMed]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Absorption enhancing proximity effects in aperiodic nanowire arrays,” Opt. Express 21, A964–A969 (2013).
[Crossref]

C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?”; Opt. Express 22, A542–A551 (2014).
[Crossref] [PubMed]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20, A125–A132 (2012).
[Crossref] [PubMed]

S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, J. S. Yu, and Y. T. Lee, “Antireflective property of thin film a-si solar cell structures with graded refractive index structure,” Opt. Express 19, A108–A117 (2011).
[Crossref] [PubMed]

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A. Aberle, “Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells,” Opt. Express 20, 29488–29499 (2012).
[Crossref]

P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Light trapping in thin-film solar cells with randomly rough and hybrid textures,” Opt. Express 21, A808–A820 (2013).
[Crossref] [PubMed]

M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21, A268–A275 (2013).
[Crossref] [PubMed]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013).
[Crossref] [PubMed]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photoniccrystal thin films,” Phys. Rev. A 88, 053835 (2013).
[Crossref]

Phys. Rev. B (1)

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Phys. Rev. Lett. (1)

O. Sigmund and K. Hougaard, “Geometric properties of optimal photonic crystals,” Phys. Rev. Lett. 100, 153904 (2008).
[Crossref] [PubMed]

Phys. Status Solidi A (1)

C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K.-D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod’Homme, P. R. i. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, “Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells,” Phys. Status Solidi A 212, 140–155 (2015).
[Crossref]

Prog. Photovolt. Res. Appl. (4)

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, and J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Prog. Photovolt. Res. Appl. 19, 844–850 (2011).
[Crossref]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 1237–1245 (2014).

R. Rothemund, T. Umundum, G. Meinhardt, K. Hingerl, T. Fromherz, and W. Jantsch, “Light trapping in pyramidally textured crystalline silicon solar cells using back-side diffractive gratings,” Prog. Photovolt. Res. Appl. 21, 747–753 (2013).

M. M. de Jong, P. J. Sonneveld, J. Baggerman, C. J. M. van Rijn, J. K. Rath, and R. E. I. Schropp, “Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments,” Prog. Photovolt. Res. Appl. 22, 540–547 (2014).
[Crossref]

Progr. Photovolt. Res. Appl. (1)

M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Progr. Photovolt. Res. Appl. 9, 123–135 (2001).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

L. C. Andreani, A. Bozzola, P. Kowalczewski, and M. Liscidini, “Photonic light trapping and electrical transport in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 135, 78–92 (2015).
[Crossref]

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92, 1689–1696 (2008).
[Crossref]

Other (10)

R. Judson, “Genetic algorithms and their use in chemistry,” in “Reviews in Computational Chemistry,” (John Wiley & Sons, Inc., 1996), pp. 1–73.

R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley-IEEE Press,2007).
[Crossref]

American Society for Testing Materials, http://rredc.nrel.gov/solar/spectra/am1.5/ . (2015).

European photoNvoltaic project, http://www.photonvoltaics.org/ (2015). [This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No 309127, PhotoNVoltaics].

International Technology Roadmap for Photovoltaic (ITRPV), http://www.itrpv.net/ (2015).

L. Tsakalakos, Nanotechnology for Photovoltaics (CRC Press, 2010).

J. Nelson, The Physics of Solar Cells (Imperial College, 2003).
[Crossref]

European Photovoltaic Industry Association, www.epia.org (2015).

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” in “Proc. SPIE,”, (Brussels, Belgium, 2012), vol. 8438, pp. 84380F-84380F–9.

J. Frühauf, Shape and Functional Elements of the Bulk Silicon Microtechnique: A Manual of Wet-Etched Silicon Structures (Springer-Verlag, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Methods for introducing disorder into a periodic structure. (a) Periodic structure defined by unit cell (UC), period (PUC), hole shape and size (here an inverted pyramid of width WUC) and hole filling fraction (f UC). P U C o p, W U C o p and f U C o p are optimal parameters for the best efficiency. (b) Most general method to model a pseudo-random structure defined by super-cell (SC), user-set period (PSC), hole shape, hole size (which may vary among holes), hole positions (random or correlated disorder) and filling fraction (fSC). (c) Second method to introduce randomness by keeping the same parameters as for the optimal periodic structure (cf. (a)) and by varying the hole positions only. (d-e) Third method to introduce randomness. The equivalent periodic unit cell (d) is taken as a reference; its filling fraction f U C e q is set by the user whereas other structure parameters ( P U C e q and W U C e qare obtained by optimization. The pseudo-random super-cell (e) is defined by keeping the equivalent periodic structure parameters ( f U C e q and W U C e q) while changing randomly the hole positions.
Fig. 2
Fig. 2 Studied structures. (a) SEM image of periodically patterned c-Si wafer (NIL and wet etching processes), (b) schematic view example of realistic solar cell, (c) simplified periodic solar cell studied in this work, (d) SEM image of randomly patterned c-Si wafer (HCL and wet etching processes), (e) simplified pseudo-random solar cell studied in this work. Note that a fair comparison between pseudo-random and equivalent periodic solar cells requires the use of the same structure parameters (hole size and shape, layer thicknesses) in both cases.
Fig. 3
Fig. 3 (a) Computation of the absorption in the active layer of a solar cell. A1: absorption between both two horizontal planes (computation box) obtained by computing Poynting vectors Sp along these planes. A2: parasitic absorption in the ARC layer obtained by computing the local absorption in the ARC volume. AcSi = A1A2: absorption in the active c-Si layer. (b) Vertical discretization of the structure in the computation box.
Fig. 4
Fig. 4 Absorption spectrum in each layer of the optimal periodic structure determined by the GA.
Fig. 5
Fig. 5 Jsc maps (mA·cm−2) and determination of equivalent periodic structures for each filling fraction by scanning the period PUC of the unit cell: RCWA results (top) and smoothed RCWA results (bottom) by taking into account the experimental inaccuracies of NIL and wet etching processes. White circles represent the selected equivalent periodic structures and yellow circle is the optimal one (i.e. highest Jsc).
Fig. 6
Fig. 6 Random hole positions. (a) SEM top view images of c-Si wafer patterned by HCL and wet etching with non overlapping holes (top) and some overlapping holes (down). (b-c) Top views of super-cells for two different filling fractions (fSC = 35% and fSC = 95% respectively). Black square holes belong to the super-cell modeled by RCWA. Orange square holes belong to neighboring super-cells. In the red frame (upper left corner), the equivalent periodic cell is shown for comparison.
Fig. 7
Fig. 7 (a) Absorption spectra of equivalent periodic solar cells (red circles) and pseudo-random solar cells (blue bars) for 35% filling fraction in both cases. (b) Evolution of the absorption spectrum with the filling fraction in pseudo-random solar cells.
Fig. 8
Fig. 8 Comparison of Jsc between pseudo-random and equivalent periodic solar cells. The vertical black dashed line denotes the maximal filling fraction reachable by HCL.

Tables (2)

Tables Icon

Table 1 GA parameters (top) and optimal structure parameters provided by the GA (bottom).

Tables Icon

Table 2 Evolution of Jsc and computation time with the number of wavelength points. Variable wavelength step and interpolation were used for the 80-points case. Constant step was used in all other cases.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J s c = 350 n m 1100 n m S ( λ ) A c S i ( λ ) λ d λ ,

Metrics